Skip to main content
Log in

Non-negligible Effect of Native Rhizobacteria on Cooperation with Plant Growth Regulators Improve Tolerance to Cadmium: A Case Study Using Duckweed Spirodela polyrhiza as Indicating Plant

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Plant growth regulators (PGRs) are well known for their ability to improve plants’ tolerance to heavy metals. However, in these treatments, the contribution of native rhizobacteria on heightened tolerance to heavy metals is usually not considered, and thus PGR ability is overestimated. In this study, using duckweed Spirodela polyrhiza as indicating plant and according to the responses of it grown under nonsterile and sterile conditions, native rhizobacteria were able to cooperate with PGRs and thereby improved duckweed’s tolerance to Cd stress. All the randomly selected bacterial isolates and salicylic acid exerted synergistic effects that improved Cd tolerance, suggesting that active rhizobacteria are not necessarily plant growth-promoting rhizobacteria (PGPRs). Comparative physiological and transcriptomic analyses showed that the cooperation between the native bacterium Pseudomonas and salicylic acid can greatly reduce Cd accumulation and decrease oxidative stress, thus lowering the requirement of antioxidant defense in duckweed; moreover, the synthesis of flavonoids that facilitates reactive oxygen species scavenging in duckweed was significantly induced. This study recommends that the contribution of native rhizobacteria on improved plant tolerance to heavy metals should be considered when applying PGRs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Afonne OJ, Ifediba EC (2020) Heavy metals risks in plant foods-need to step up precautionary measures. Curr Opin Toxicol 22:1–6

    Article  Google Scholar 

  • Alves ARA, Yin Q, Oliveira RS, Silva EF, Novo LAB (2022) Plant growth-promoting bacteria in phytoremediation of metal-polluted soils: current knowledge and future directions. Sci Total Environ 838:156435

    Article  CAS  PubMed  Google Scholar 

  • Bai Y, Müller DB, Srinivas G, Garrido-Oter R, Potthoff E, Rott M, Dombrowski N, Münch PC, Spaepen S, Remus-Emsermann M, Hüttel B, McHardy AC, Vorholt JA, Schulze-Lefert P (2015) Functional overlap of the Arabidopsis leaf and root microbiota. Nature 528:364–369

    Article  CAS  PubMed  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of proline for water stress studies. Plant Soil 39(1):305–307

    Article  Google Scholar 

  • Brunetti P, Zanella L, De Paolis A, Di Litta D, Cecchetti V, Falasca G, Barbieri M, Altamura MM, Costantino P, Cardarelli M (2015) Cadmium-inducible expression of the ABC-type transporter AtABCC3 increases phytochelatin-mediated cadmium tolerance in Arabidopsis. J Exp Bot 66(13):3815–3829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Teng Y, Lu S, Wang Y, Wang J (2015) Contamination features and health risk of soil heavy metals in China. Sci Total Environ 512:143–153

    Article  PubMed  Google Scholar 

  • Chen L, Long C, Wang D, Yang J (2020) Phytoremediation of cadmium (Cd) and uranium (U) contaminated soils by Brassica juncea L. enhanced with exogenous application of plant growth regulators. Chemosphere. https://doi.org/10.1016/j.chemosphere.2019.125112

    Article  PubMed  PubMed Central  Google Scholar 

  • Chi Y, You Y, Wang J, Chen X, Chu S, Wang R, Zhang X, Yin S, Zhang D, Zhou P (2022) Two plant growth-promoting bacterial Bacillus strains possess different mechanisms in affecting cadmium uptake and detoxification of Solanum nigrum L. Chemosphere 305:135488

    Article  CAS  PubMed  Google Scholar 

  • Choppala G, Saifullah BN, Bibi S, Iqbal M, Rengel Z, Kunhikrishnan A, Ashwath N, Ok YS (2014) Cellular mechanisms in higher plants governing tolerance to cadmium toxicity. Crit Rev Plant Sci 33(5):374–391

    Article  CAS  Google Scholar 

  • Das P, Samantaray S, Rout GR (1997) Studies on cadmium toxicity in plants: a review. Environ Pollut 98(1):29–36

    Article  CAS  PubMed  Google Scholar 

  • Dixit P, Mukherjee PK, Ramachandran V, Eapen S (2011) Glutathione transferase from Trichoderma virens enhances cadmium tolerance without enhancing its accumulation in transgenic Nicotiana tabacum. PLoS ONE 6(1):e16360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubey S, Shri M, Gupta A, Rani V, Chakrabarty D (2018) Toxicity and detoxification of heavy metals during plant growth and metabolism. Environ Chem Lett 16(4):1169–1192

    Article  CAS  Google Scholar 

  • El-Esawi MA, Elkelish A, Soliman M, Elansary HO, Zaid A, Wani SH (2020) Serratia marcescens BM1 enhances cadmium stress tolerance and phytoremediation potential of soybean through modulation of osmolytes, leaf gas exchange, antioxidant machinery, and stress-responsive genes expression. Antioxidants 9(1):43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA, Olsen GJ (2008) Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 74(8):2461–2470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fryzova R, Pohanka M, Martinkova P, Cihlarova H, Kynicky J (2017) Oxidative stress and heavy metals in plants. Rev Environ Contam Toxicol 245:129–156

    CAS  Google Scholar 

  • Fu S, Lu Y, Zhang X, Yang G, Chao D, Wang Z, Shi M, Chen J, Chao DY, Li R, Ma JF, Xia J (2019) The ABC transporter ABCG36 is required for cadmium tolerance in rice. J Exp Bot 70(20):5909–5918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29(7):644–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gullner G, Komives T, Király L, Schröder P (2018) Glutathione S-transferase enzymes in plant-pathogen interactions. Front Plant Sci 9:1836

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta P, Kumar V, Usmani Z, Rani R, Chandra A, Gupta VK (2020) Implications of plant growth promoting Klebsiella sp. CPSB4 and Enterobacter sp. CPSB49 in luxuriant growth of tomato plants under chromium stress. Chemosphere. https://doi.org/10.1016/j.chemosphere.2019.124944

    Article  PubMed  Google Scholar 

  • Han H, Zhang H, Qin S, Zhang J, Yao L, Chen Z, Yang J (2021) Mechanisms of Enterobacter bugandensis TJ6 immobilization of heavy metals and inhibition of Cd and Pb uptake by wheat based on metabolomics and proteomics. Chemosphere 276:130157

    Article  CAS  PubMed  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125(1):189–198

    Article  CAS  PubMed  Google Scholar 

  • Hediji H, Kharbech O, Massoud MB, Boukari N, Debez A, Chaibi W, Chaoui A, Djebali W (2021) Salicylic acid mitigates cadmium toxicity in bean (Phaseolus vulgaris L.) seedlings by modulating cellular redox status. Environ Exp Bot. https://doi.org/10.1016/j.envexpbot.2021.104432

    Article  Google Scholar 

  • Hernández I, Alegre L, Van Breusegem F, Munné-Bosch S (2009) How relevant are flavonoids as antioxidants in plants? Trends Plant Sci 14(3):125–132

    Article  PubMed  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water culture method for growing plants without soil. Circular California Agricultural Experiment Station 347 (2nd edit)

  • Hsu YT, Kao CH (2005) Abscisic acid accumulation and cadmium tolerance in rice seedlings. Physiol Plant 124(1):71–80

    Article  CAS  Google Scholar 

  • Hu B, Deng F, Chen G, Chen X, Gao W, Long L, Xia J, Chen ZH (2020) Evolution of abscisic acid signaling for stress responses to toxic metals and metalloids. Front Plant Sci 11:909

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang Y, Wang L, Wang W, Li T, He Z, Yang X (2019) Current status of agricultural soil pollution by heavy metals in China: a meta-analysis. Sci Total Environ 651:3034–3042

    Article  CAS  PubMed  Google Scholar 

  • Huo W, Zhuang C-h, Cao Y, Pu M, Yao H, Lou L-q, Cai Q-s (2012) Paclobutrazol and plant-growth promoting bacterial endophyte Pantoea sp. enhance copper tolerance of guinea grass (Panicum maximum) in hydroponic culture. Acta Physiol Plant 34(1):139–150

    Article  CAS  Google Scholar 

  • Islam F, Yasmeen T, Arif MS, Riaz M, Shahzad SM, Imran Q, Ali I (2016) Combined ability of chromium (Cr) tolerant plant growth promoting bacteria (PGPB) and salicylic acid (SA) in attenuation of chromium stress in maize plants. Plant Physiol Biochem 108:456–467

    Article  CAS  PubMed  Google Scholar 

  • Jin X, Yang X, Islam E, Liu D, Mahmood Q (2008) Effects of cadmium on ultrastructure and antioxidative defense system in hyperaccumulator and non-hyperaccumulator ecotypes of Sedum alfredii Hance. J Hazard Mater 156(1–3):387–397

    Article  CAS  PubMed  Google Scholar 

  • Kazerooni EA, Maharachchikumbura SSN, Adhikari A, Al-Sadi AM, Kang SM, Kim LR, Lee IJ (2021) Rhizospheric Bacillus amyloliquefaciens protects Capsicum annuum cv. Geumsugangsan from multiple abiotic stresses via multifarious plant growth-promoting attributes. Front Plant Sci. https://doi.org/10.3389/fpls.2021.669693

    Article  PubMed  PubMed Central  Google Scholar 

  • Khalid M, Saeed ur R, Bilal M, Huang D-f (2019) Role of flavonoids in plant interactions with the environment and against human pathogens-A review. J Integr Agric 18(1):211–230

    Article  CAS  Google Scholar 

  • Khan N, Bano A (2018) Effects of exogenously applied salicylic acid and putrescine alone and in combination with rhizobacteria on the phytoremediation of heavy metals and chickpea growth in sandy soil. Int J Phytorem 20(5):405–414

    Article  CAS  Google Scholar 

  • Khanna K, Jamwal VL, Kohli SK, Gandhi SG, Ohri P, Bhardwaj R, Abd Allah EF, Hashem A, Ahmad P (2019) Plant growth promoting rhizobacteria induced Cd tolerance in Lycopersicon esculentum through altered antioxidative defense expression. Chemosphere 217:463–474

    Article  CAS  PubMed  Google Scholar 

  • Kovács V, Gondor OK, Szalai G, Darkó E, Majláth I, Janda T, Pál M (2014) Synthesis and role of salicylic acid in wheat varieties with different levels of cadmium tolerance. J Hazard Mater 280:12–19

    Article  PubMed  Google Scholar 

  • Kumari A, Pandey-Rai S (2018) Enhanced arsenic tolerance and secondary metabolism by modulation of gene expression and proteome profile in Artemisia annua L. after application of exogenous salicylic acid. Plant Physiol Biochem 132:590–602

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Wang G, Wang Y, Dan Y, Guan C, Ji J (2019a) Foliar application of salicylic acid alleviate the cadmium toxicity by modulation the reactive oxygen species in potato. Ecotoxicol Environ Saf 172:317–325

    Article  CAS  PubMed  Google Scholar 

  • Li X, Zhang L, Ahammed GJ, Li Y-T, Wei J-P, Yan P, Zhang L-P, Han X, Han W-Y (2019b) Salicylic acid acts upstream of nitric oxide in elevated carbon dioxide-induced flavonoid biosynthesis in tea plant (Camellia sinensis L.). Environ Exp Bot 161:367–374

    Article  CAS  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Liu L, Zheng S, Chen F, Li J, Ma L, Lin L, Tang H, Deng Q, Li H, Wang X, Wang J, Tang Y, Li M, Zhang H, Li H (2018) Effects of paclobutrazol (PP333) on lead and zinc accumulations in Pseudostellaria maximowicziana. Chem Ecol 34(5):412–421

    Article  Google Scholar 

  • Liu Q, Zhang Y, Yinjie W, Weilin W, Gu C, Suzhen H, Haiyan Y (2020) Quantitative proteomic analysis reveals complex regulatory and metabolic response of Iris lactea Pall. Var. chinensis to cadmium toxicity. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2020.123165

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu YS, Tao Y, Yang XZ, Liu YN, Shen RF, Zhu XF (2022) Gibberellic acid alleviates cadmium toxicity in rice by regulating NO accumulation and cell wall fixation capacity of cadmium. J Hazard Mater 439:129597

    Article  CAS  PubMed  Google Scholar 

  • Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15:550

  • Manoj SR, Karthik C, Kadirvelu K, Arulselvi PI, Shanmugasundaram T, Bruno B, Rajkumar M (2020) Understanding the molecular mechanisms for the enhanced phytoremediation of heavy metals through plant growth promoting rhizobacteria: a review. J Environ Manage 254:109779

    Article  CAS  PubMed  Google Scholar 

  • Marrs KA (1996) The functions and regulation of glutathione S-transferases in plants. Annu Rev Plant Biol 47(1):127–158

    Article  CAS  Google Scholar 

  • Mierziak J, Kostyn K, Kulma A (2014) Flavonoids as important molecules of plant interactions with the environment. Molecules 19(10):16240–16265

    Article  PubMed  PubMed Central  Google Scholar 

  • Naz R, Sarfraz A, Anwar Z, Yasmin H, Nosheen A, Keyani R, Roberts TH (2021) Combined ability of salicylic acid and spermidine to mitigate the individual and interactive effects of drought and chromium stress in maize (Zea mays L.). Plant Physiol Biochem 159:285–300

    Article  CAS  PubMed  Google Scholar 

  • Oleńska E, Małek W, Wójcik M, Swiecicka I, Thijs S, Vangronsveld J (2020) Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: a methodical review. Sci Total Environ 743:140682

    Article  PubMed  Google Scholar 

  • Pan J, Guan M, Xu P, Chen M, Cao Z (2021) Salicylic acid reduces cadmium (Cd) accumulation in rice (Oryza sativa L.) by regulating root cell wall composition via nitric oxide signaling. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2021.149202

    Article  PubMed  PubMed Central  Google Scholar 

  • Pramanik K, Mitra S, Sarkar A, Maiti TK (2018) Alleviation of phytotoxic effects of cadmium on rice seedlings by cadmium resistant PGPR strain Enterobacter aerogenes MCC 3092. J Hazard Mater 351:317–329

    Article  CAS  PubMed  Google Scholar 

  • Pramanik K, Mandal S, Banerjee S, Ghosh A, Maiti TK, Mandal NC (2021) Unraveling the heavy metal resistance and biocontrol potential of Pseudomonas sp. K32 strain facilitating rice seedling growth under Cd stress. Chemosphere. https://doi.org/10.1016/j.chemosphere.2021.129819

    Article  PubMed  Google Scholar 

  • Qadir M, Hussain A, Hamayun M, Shah M, Iqbal A, Irshad M, Ahmad A, Lodhi MA, Lee IJ (2021) Phytohormones producing Acinetobacter bouvetii P1 mitigates chromate stress in sunflower by provoking host antioxidant response. Antioxidants. https://doi.org/10.3390/antiox10121868

    Article  PubMed  PubMed Central  Google Scholar 

  • Rasafi TE, Oukarroum A, Haddioui A, Song H, Kwon EE, Bolan N, Tack FMG, Sebastian A, Prasad MNV, Rinklebe J (2022) Cadmium stress in plants: a critical review of the effects, mechanisms, and tolerance strategies. Crit Rev Environ Sci Technol 52(5):675–726

    Article  Google Scholar 

  • Reasoner DJ, Geldreich EE (1985) A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49(1):1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rostami S, Azhdarpoor A (2019) The application of plant growth regulators to improve phytoremediation of contaminated soils: a review. Chemosphere 220:818–827

    Article  CAS  PubMed  Google Scholar 

  • Saleem MH, Fahad S, Khan SU, Ahmar S, Ullah Khan MH, Rehman M, Maqbool Z, Liu L (2020) Morpho-physiological traits, gaseous exchange attributes, and phytoremediation potential of jute (Corchorus capsularis L.) grown in different concentrations of copper-contaminated soil. Ecotoxicol Environ Saf. https://doi.org/10.1016/j.ecoenv.2019.109915

    Article  PubMed  Google Scholar 

  • Sharma R, Lenaghan SC (2022) Duckweed: a potential phytosensor for heavy metals. Plant Cell Rep. https://doi.org/10.1007/s00299-022-02913-7

    Article  PubMed  Google Scholar 

  • Shen G, Niu J, Deng Z (2017) Abscisic acid treatment alleviates cadmium toxicity in purple flowering stalk (Brassica campestris L. ssp. chinensis var. purpurea Hort.) seedlings. Plant Physiol Biochem 118:471–478

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Parihar P, Singh R, Singh VP, Prasad SM (2016) Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front Plant Sci 6:1143

    Article  PubMed  PubMed Central  Google Scholar 

  • Sytar O, Kumari P, Yadav S, Brestic M, Rastogi A (2019) Phytohormone priming: regulator for heavy metal stress in plants. J Plant Growth Regul 38(2):739–752

    Article  CAS  Google Scholar 

  • Tak HI, Ahmad F, Babalola OO (2013) Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals. Rev Environ Contam Toxicol 223:33–52

    CAS  PubMed  Google Scholar 

  • Tang J, Zhang F, Cui W, Ma J (2014) Genetic structure of duckweed population of Spirodela, Landoltia and Lemna from Lake Tai. China Planta 239(6):1299–1307

    Article  CAS  PubMed  Google Scholar 

  • Tang J, Zhang Y, Cui Y, Ma J (2015) Effects of a rhizobacterium on the growth of and chromium remediation by Lemna minor. Environ Sci Pollut Res 22(13):9686–9693

    Article  CAS  Google Scholar 

  • Verrier PJ, Bird D, Burla B, Dassa E, Forestier C, Geisler M, Klein M, Kolukisaoglu U, Lee Y, Martinoia E, Murphy A, Rea PA, Samuels L, Schulz B, Spalding EJ, Yazaki K, Theodoulou FL (2008) Plant ABC proteins-a unified nomenclature and updated inventory. Trends Plant Sci 13(4):151–159

    Article  CAS  PubMed  Google Scholar 

  • Wang W (1990) Literature review on duckweed toxicity testing. Environ Res 52(1):7–22

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Liu L, Lin W, Luo J (2020) Development and characterization of an aerobic bacterial consortium for autotrophic biodegradation of thiocyanate. Biochem Eng J 398:125461

    CAS  Google Scholar 

  • Wang F, Tan H, Huang L, Cai C, Ding Y, Bao H, Chen Z, Zhu C (2021) Application of exogenous salicylic acid reduces Cd toxicity and Cd accumulation in rice. Ecotoxicol Environ Saf 207:111198

    Article  CAS  PubMed  Google Scholar 

  • Yuan X, Xue N, Han Z (2021) A meta-analysis of heavy metals pollution in farmland and urban soils in China over the past 20 years. J Environ Sci 101:217–226

    Article  CAS  Google Scholar 

  • Zhao FY, Liu W, Zhang SY (2009) Different responses of plant growth and antioxidant system to the combination of cadmium and heat stress in transgenic and non-transgenic rice. J Integr Plant Biol 51(10):942–950

    Article  CAS  PubMed  Google Scholar 

  • Zhu XF, Jiang T, Wang ZW, Lei GJ, Shi YZ, Li GX, Zheng SJ (2012) Gibberellic acid alleviates cadmium toxicity by reducing nitric oxide accumulation and expression of IRT1 in Arabidopsis thaliana. J Hazard Mater 239:302–307

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 41977034 and No. 91951118), the Guangdong Basic and Applied Basic Research Foundation (No. 2021A1515010565), and the Fundamental Research Funds for the Central Universities (no. 2022ZYGXZR040).

Author information

Authors and Affiliations

Authors

Contributions

MD, LW and LJ conceived and designed the experiments. MD performed the experiments. MD and LJ wrote original manuscript. LW and LJ revised the manuscript and supervised the research.

Corresponding authors

Correspondence to Weitie Lin or Jianfei Luo.

Ethics declarations

Competing Interests

The authors declare no conflict of interests.

Additional information

Handling Editor: Vijay kumar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 603 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, D., Lin, W. & Luo, J. Non-negligible Effect of Native Rhizobacteria on Cooperation with Plant Growth Regulators Improve Tolerance to Cadmium: A Case Study Using Duckweed Spirodela polyrhiza as Indicating Plant. J Plant Growth Regul (2023). https://doi.org/10.1007/s00344-023-10954-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00344-023-10954-9

Keywords

Navigation