Skip to main content
Log in

Assessment of Alfalfa (Medicago sativa L.) Cultivars for Salt Tolerance Based on Yield, Growth, Physiological, and Biochemical Traits

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Alfalfa (Medicago sativa L.) is one of the most valuable forage crops having an intermediate salt-tolerant level. In this fact, twelve selected alfalfa from the south Tunisia oasis were subjected to salt stress looking for their adaptability against these abiotic constraints. Hence, this work reports the sodium chloride effect (150 mM) on the basis of biomass yield reduction. For this, some cultural, physiological, and biochemical parameters were monitored. Indeed, the relative water content, the stem and leaves aspects, chlorophyll content, protein amount, free proline amount, K+ and Na+ concentrations, protease and α-amylase activities, superoxide dismutase, and catalase ones were monitored. The findings give rise to no significant salinity effect on stem length and leaf number. However, there was a significant difference in leaf color for plants under salt stress. In addition, salinity decreases both fresh and dry weight of all cultivars. NaCl treatment significantly reduced chlorophyll content and the K+ ion accumulations. Also, under salt stress, there was higher proline accumulation, Na+, and proteins in all alfalfa cultivars than under control. Additionally, these findings noticed the increase of enzymatic scavenging system related to the activity of superoxide dismutase, catalase, and protease under salt stress condition. In contrast, the α-amylase activity decreased under salt treatment. It seems from the studied parameters that our 12 alfalfa oasis cultivars are tolerant to salt stress under oasis conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acosta-Motos JR, Ortuño MF, Bernal-Vicente A, Diaz-Vivancos P, Sanchez-Blanco MJ, Hernandez JA (2017) Plant responses to salt stress: adaptive mechanisms. Agronomy 7(1):18

    Article  Google Scholar 

  • Adda A, Regagba Z, Latigui A, Merah O (2014) Effect of salt stress on α-amylase activity, sugars mobilization and osmotic potential of Phaseolus vulgaris L. seeds var.'Cocorose'and'Djadida'during germination. J Biol Sci 14(5):370–375

  • Alam MA, Juraimi A, Rafii M, Hamid A, Aslani F, Alam M (2015) Effects of salinity and salinity-induced augmented bioactive compounds in purslane (Portulaca oleracea L.) for possible economical use. Food Chem 169:439–447

    Article  PubMed  Google Scholar 

  • Albicoro FJ, Draghi WO, Martini MC, Salas ME, Tejerizo GAT, Lozano MJ, López JL, Vacca C, Cafiero JH, Pistorio M (2021) The two-component system actjk is involved in acid stress tolerance and symbiosis in Sinorhizobium meliloti. J Biotechnol

  • Anower MR, Mott IW, Peel MD, Wu Y (2013) Characterization of physiological responses of two alfalfa half-sib families with improved salt tolerance. Plant Physiol Biochem 71:103–111

    Article  PubMed  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta Vulgaris. Plant Physiol 24(1):1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashraf MY, Afaf R, Qureshi MS, Sarwar G, Naqvi M (2002) Salinity induced changes in α-amylase and protease activities and associated metabolism in cotton varieties during germination and early seedling growth stages. Acta Physiol Plant 24(1):37–44

    Article  CAS  Google Scholar 

  • Assaha DV, Ueda A, Saneoka H, Al-Yahyai R, Yaish MW (2017) The role of Na+ and K+ transporters in salt stress adaptation in glycophytes. Front Physiol 8:509

    Article  PubMed  PubMed Central  Google Scholar 

  • Badran A, ElSherebeny EA, Salama Y (2015) Performance of some alfalfa cultivars under salinity stress conditions. J Agric Sci 7(10):281

    Google Scholar 

  • Benabderrahim M, Hamza H, Haddad M, Ferchichi A (2015) Assessing the drought tolerance variability in Mediterranean alfalfa (Medicago sativa L.) genotypes under arid conditions. Plant Biosyst 149(2):395–403

    Article  Google Scholar 

  • Benabderrahim MA, Guiza M, Haddad M (2020) Genetic diversity of salt tolerance in tetraploid alfalfa (Medicago sativa L.). Acta Physiol Plant 42(1):1–11

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    Article  CAS  PubMed  Google Scholar 

  • Castellani LG, Luchetti A, Nilsson JF, Pérez-Giménez J, Wegener C, Schlüter A, Pühler A, Lagares A, Brom S, Pistorio M (2021) Exopolysaccharide characterization of Rhizobium favelukesii LPU83 and its role in the symbiosis with alfalfa. Front Plant Sci 12

  • Chen X, Laudeman TW, Rushton PJ, Spraggins TA, Timko MP (2007) CGKB: an annotation knowledge base for cowpea (Vigna unguiculata L.) methylation filtered genomic genespace sequences. BMC Bioinform 8(1):129

    Article  CAS  Google Scholar 

  • Denden M, Bettaieb T, Salhi A, Mathlouthi M (2005) Effet de la salinité sur la fluorescence chlorophyllienne, la teneur en proline et la production florale de trois espèces ornementales. Tropicultura 23(4):220–225

    Google Scholar 

  • Dimitrova MS, Tishinova V, Velcheva V (1994) Combined effect of zinc and lead on the hepatic superoxide dismutase-catalase system in carp (Cyprinus carpio). Comp Biochem Physiol C 108(1):43–46

    Google Scholar 

  • El-Bassiouny HM, Bekheta M (2005a) Effect of salt stress on relative water content, lipid peroxidation, polyamines, amino acids and ethylene of two wheat cultivars. Int J Agric Biol 7(3):363–368

    CAS  Google Scholar 

  • El-Sharkawy MS, El-Beshsbeshy TR, Mahmoud EK, Abdelkader NI, Al-Shal RM, Missaoui AM (2017) Response of alfalfa under salt stress to the application of potassium sulfate nanoparticles. Am J Plant Sci 8(8):1751–1773

    Article  CAS  Google Scholar 

  • Farissi M, Bouizgaren A, Faghire M, Bargaz A, Ghoulam C (2011) Agro-physiological responses of Moroccan alfalfa (Medicago sativa L.) populations to salt stress during germination and early seedling stages. Seed Sci Technol 39(2):389–401

    Article  Google Scholar 

  • Faseela P, Sinisha A, Brestič M, Puthur J (2019) Chlorophyll a fluorescence parameters as indicators of a particular abiotic stress in rice. Photosynthetica 57(SI):108–115

  • Hossain A, Farooq M, Sabagh AE, Hasanuzzaman M, Erman M, Islam T (2020) Morphological, physiobiochemical and molecular adaptability of legumes of fabaceae to drought stress, with special reference to Medicago Sativa L. The plant family fabaceae. Springer, New York, pp 289–317

    Chapter  Google Scholar 

  • Ikhajiagbe B, Ogwu MC, Ogochukwu OF, Odozi EB, Adekunle IJ, Omage ZE (2021) The place of neglected and underutilized legumes in human nutrition and protein security in Nigeria. Crit Rev Food Sci Nutr 1–10

  • Jamil M, Rehman S, Rha E (2007) Salinity effect on plant growth, PSII photochemistry and chlorophyll content in sugar beet (Beta vulgaris L.) and cabbage (Brassica oleracea capitata L.). Pak J Bot 39(3):753–760

    Google Scholar 

  • Kapoor K, Srivastava A (2010) Assessment of salinity tolerance of Vinga mungo var. Pu-19 using ex vitro and in vitro methods. Asian J Biotechnol 2(2):73–85

    Article  Google Scholar 

  • Kavita K, Alka S (2010) Assessment of salinity tolerance of Vigna mungo var. Pu-19 using ex vitro and in vitro methods. Asian J Biotechnol 2(2):73–85

    Article  Google Scholar 

  • Li B, Ouyang J, Li C, Shang X, Zou J (2018) Response to NaCl stress in Salix matsudana Koidz seedlings. Pol J Environ Stud 27(2)

  • Liu L, Xia W, Li H, Zeng H, Wei B, Han S, Yin C (2018) Salinity inhibits rice seed germination by reducing α-amylase activity via decreased bioactive gibberellin content. Front Plant Sci 9:275

    Article  PubMed  PubMed Central  Google Scholar 

  • Mann A, Kaur G, Kumar A, Sanwal SK, Singh J, Sharma P (2019) Physiological response of chickpea (Cicer arietinum L.) at early seedling stage under salt stress conditions. Legume Res Int J 42(5):625–632

  • Masoumzadeh BM, Imani AA, Khayamaim S (2012a) Salinity stress effect on proline and chlorophyll rate in four beet cultivars. Anal Biol Res 3:5453–5456

    CAS  Google Scholar 

  • Masoumzadeh BM, Imani AA, Khayamaim S (2012b) Salinity stress effect on proline and chlorophyll rate in four beet cultivars. Ann Biol Res 3(12):5453–5456

    CAS  Google Scholar 

  • Mbarki S, Skalicky M, Vachova P, Hajihashemi S, Jouini L, Zivcak M, Tlustos P, Brestic M, Hejnak V, Zoghlami Khelil A (2020) Comparing salt tolerance at seedling and germination stages in local populations of Medicago ciliaris L. to Medicago intertexta L. and Medicago scutellata L. Plants 9(4):526

  • Misra A, Sahu S, Misra M, Singh P, Meera I, Das N, Kar M, Sahu P (1997a) Sodium chloride induced changes in leaf growth, and pigment and protein contents in two rice cultivars. Biol Plant 39(2):257–262

    Article  Google Scholar 

  • Pérez-Clemente RM, Vives V, Zandalinas SI, López-Climent MF, Muñoz V, Gómez-Cadenas A (2013) Biotechnological approaches to study plant responses to stress. BioMed Res Int

  • Qados AMA (2011) Effect of salt stress on plant growth and metabolism of bean plant Vicia faba (L.). J Saudi Soc Agric Sci 10(1):7–15

  • Raina A, Khan S, Wani MR, Laskar RA, Mushtaq W (2019) Chickpea (Cicer arietinum L.) cytogenetics, genetic diversity and breeding. In: Advances in plant breeding strategies: Legumes. Springer, New York, pp 53–112

  • Rasel M, Tahjib-Ul-Arif M, Hossain MA, Hassan L, Farzana S, Brestic M (2020) Screening of salt-tolerant rice landraces by seedling stage phenotyping and dissecting biochemical determinants of tolerance mechanism. J Plant Growth Regul 1–16

  • Rodrigues CRF, Silva EN, Ferreira-Silva SL, Voigt EL, Viégas RA, Silveira JAG (2013) High K+ supply avoids Na+ toxicity and improves photosynthesis by allowing favorable K+: Na+ ratios through the inhibition of Na+ uptake and transport to the shoots of Jatropha curcas plants. J Plant Nutr Soil Sci 176(2):157–164

    Article  CAS  Google Scholar 

  • Saibi W, Drira M, Yacoubi I, Feki K, Brini F (2015) Empiric, structural and in silico findings give birth to plausible explanations for the multifunctionality of the wheat dehydrin (DHN-5). Acta Physiol Plant 37(3):1–8

    Article  CAS  Google Scholar 

  • Saibi W, Zouari N, Masmoudi K, Brini F (2016) Role of the durum wheat dehydrin in the function of proteases conferring salinity tolerance in Arabidopsis thaliana transgenic lines. Int J Biol Macromol 85:311–316

    Article  CAS  PubMed  Google Scholar 

  • Sankaran S, Khot LR, Espinoza CZ, Jarolmasjed S, Sathuvalli VR, Vandemark GJ, Miklas PN, Carter AH, Pumphrey MO, Knowles NR (2015) Low-altitude, high-resolution aerial imaging systems for row and field crop phenotyping: a review. Eur J Agron 70:112–123

    Article  Google Scholar 

  • Singh A (2018) The physiology of salt tolerance in four genotypes of chickpea during germination.

  • Singh S, Rawat PS (2021) Nutraceuticals: an approach towards safe and effective medications. In: Treating endocrine and metabolic disorders with herbal medicines. IGI Global, pp 278–297

  • Sleimi N, Guerfali S, Bankaji I (2015) Biochemical indicators of salt stress in Plantago maritima: implications for environmental stress assessment. Ecol Ind 48:570–577

    Article  CAS  Google Scholar 

  • Sonam S, Anirudha R, Subhash C (2014) Effect of short term salt stress on chlorophyll content, protein and activities of catalase and ascorbate peroxidase enzymes in pearl millet. Am J Plant Physiol 9(1):32–37

    Google Scholar 

  • Srinieng K, Saisavoey T, Karnchanatat A (2015) Effect of salinity stress on antioxidative enzyme activities in tomato cultured in vitro. Pak J Bot 47(1):1–10

    CAS  Google Scholar 

  • Taffouo V, Wamba O, Youmbi E, Nono G, Akoa A (2010) Growth, yield, water status and ionic distribution response of three bambara groundnut (Vigna subterranea (L.) Verdc.) landraces grown under saline conditions. Int J Bot 6(1):53–58

  • Taïbi K, Taïbi F, Abderrahim LA, Ennajah A, Belkhodja M, Mulet JM (2016) Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. S Afr J Bot 105:306–312

    Article  Google Scholar 

  • Tripodi P, Massa D, Venezia A, Cardi T (2018) Sensing technologies for precision phenotyping in vegetable crops: current status and future challenges. Agronomy 8(4):57

    Article  Google Scholar 

  • Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35(4):753–759

    Article  CAS  PubMed  Google Scholar 

  • Wang W-B, Kim Y-H, Lee H-S, Kim K-Y, Deng X-P, Kwak S-S (2009) Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses. Plant Physiol Biochem 47(7):570–577

    Article  CAS  PubMed  Google Scholar 

  • Yan K, Shao H, Shao C, Chen P, Zhao S, Brestic M, Chen X (2013) Physiological adaptive mechanisms of plants grown in saline soil and implications for sustainable saline agriculture in coastal zone. Acta Physiol Plant 35(10):2867–2878

    Article  CAS  Google Scholar 

  • Yousuf PY, Ahmad A, Ganie AH, Sareer O, Krishnapriya V, Aref IM, Iqbal M (2017) Antioxidant response and proteomic modulations in Indian mustard grown under salt stress. Plant Growth Regul 81(1):31–50

    Article  CAS  Google Scholar 

  • Zhang M, Fang Y, Ji Y, Jiang Z, Wang L (2013) Effects of salt stress on ion content, antioxidant enzymes and protein profile in different tissues of Broussonetia papyrifera. S Afr J Bot 85:1–9

    Article  Google Scholar 

  • Zuo Z, Fan Y, Wang Z, Li S, Li H, Guo J, Mao H, Zhu X, Li X (2021) Salt acclimation induced salt tolerance in wild-type and chlorophyl b-deficient mutant wheat. Plant Soil Environ 67(1):26

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was in part financially supported by a grant from the Tunisian Ministry of Higher Education and Scientific Research contract program_2015–2018 and also the program_2019–2022 CBS-LBAP/code: LR15CBS03 and Institute of Arid Lands-Medenine: Arid and Oases Cropping Laboratory (IRA-LACO).

Author information

Authors and Affiliations

Authors

Contributions

MG, FB, and WS participated in the experimental design and execution and manuscript preparation. MAB contributed to manuscript preparation. MH and FB assisted in manuscript writing. MH and WS participated in the project supervision and manuscript preparation.

Corresponding author

Correspondence to Walid Saibi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Ranjit Riar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guiza, M., Benabdelrahim, M.A., Brini, F. et al. Assessment of Alfalfa (Medicago sativa L.) Cultivars for Salt Tolerance Based on Yield, Growth, Physiological, and Biochemical Traits. J Plant Growth Regul 41, 3117–3126 (2022). https://doi.org/10.1007/s00344-021-10499-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-021-10499-9

Keywords

Navigation