Skip to main content
Log in

Silicon Nanoparticles Mediated Increase in Glandular Trichomes and Regulation of Photosynthetic and Quality Attributes in Mentha piperita L.

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Interest in the use of the nanoparticles as plant growth elicitors mushroomed within the last decade and the field is quite intriguing to meet the growing needs of the burgeoning population. Peppermint is a plant of considerable importance to the traditional as well as modern medical world primarily because of its essential oil (EO). In view of the beneficial effects of silicon (Si) in plants and the substantial pharmaceutical importance of peppermint, the present study was designed to investigate the influence of silicon nanoparticles (SiNPs) on some of the photosynthetic and yield parameters of the plant as the nanoparticles are edged over the normal elemental forms due to some unique physico-chemical characteristics. A simple randomized experiment was designed and the treatments included: foliar spray of de-ionized water only (control), and foliar spray of SiNPs with 50, 100, 150, and 200 mg L−1. Lower concentrations of SiNPs (50 and 100 mg L−1) proved significant (P ≤ 0.05) for most of the parameters studied and increased the peltate glandular trichome density and diameter significantly. An increase of 11.5% was reported in chlorophyll content while chlorophyll fluorescence increased by 6.8%, net photosynthetic rate by 21.1% and total phenol content by 11.9% at 150 days after plantation (DAP). EO content exhibited an increase of 26.5%. While menthol content was increased by 8.85%, menthone and menthyl-acetate contents were decreased by 2.2% and 10%, respectively at 150 DAP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams PR (2007) Identification of essential oil components by gas chromatography/mass spectrometry. Allured Publishing Corporation, Carol Stream

    Google Scholar 

  • Ahmad B (2017) Influence of silicon nanoparticles and radiation-processed chitosan and sodium alginate on growth, yield and essential oil quality of peppermint (Mentha piperita L.). Ph.D. Thesis, Aligarh Muslim University, Aligarh, India

  • Ahmad B, Khan MMA, Jaleel H, Sadiq Y, Shabbir A, Uddin M (2017) Exogenously sourced γ-irradiated chitosan-mediated regulation of growth, physiology, quality attributes and yield in Mentha piperita L. Turk J Biol 41:388–401

    Article  CAS  Google Scholar 

  • Ahmad B, Jaleel H, Sadiq Y, Khan MMA, Shabbir A (2018) Response of exogenous salicylic acid on cadmium induced photosynthetic damage, antioxidant metabolism and essential oil production in peppermint. Plant Growth Regul 86:273–286

    Article  CAS  Google Scholar 

  • Ahmad B, Jahan A, Sadiq Y, Shabbir A, Jaleel H, Khan MMA (2019a) Radiation-mediated molecular weight reduction and structural modification in carrageenan potentiates improved photosynthesis and secondary metabolism in peppermint (Mentha piperita L.). Int J Biol Macromol 124:1069–1079

    Article  CAS  PubMed  Google Scholar 

  • Ahmad B, Jaleel H, Shabbir A, Khan MMA, Sadiq Y (2019b) Concomitant application of depolymerized chitosan and GA3 modulates photosynthesis, essential oil and menthol production in peppermint (Mentha piperita L.). Sci Hort 246:371–379

    Article  CAS  Google Scholar 

  • Aucique-Pérez CE, Rodrigues FA, Moreira WR, DaMatta FM (2014) Leaf Gas Exchange and Chlorophyll Fluorescence in Wheat Plants Supplied with Silicon and Infected with Pyricularia oryzae. Phytopathology 104(2):143-149

    Article  CAS  Google Scholar 

  • Baliga MS, Rao S (2010) Radio protective potential of mint: a brief review. J Cancer Res Ther 6:255–262

    Article  CAS  PubMed  Google Scholar 

  • Bandyopadhyay S, Peralta-Videa JR, Gardea-Torresdey JL (2013) Advanced analytical techniques for the measurement of nanomaterials in food and agricultural samples: a review. Environ Eng Sci 303:118–125

    Article  CAS  Google Scholar 

  • Baytop T (1999) Therapy with medicinal plants in Turkey-past and present, 2nd edn. Istanbul, Turkey, pp 348–349

    Google Scholar 

  • Biju S, Fuentes S, Gupta D (2017) Silicon improves seed germination and alleviates drought stress in lentil crops by regulating osmolytes, hydrolytic enzymes and antioxidant defense system. Plant Phyiol Biochem 119:250–264

    Article  CAS  Google Scholar 

  • Bisset NG (1995) Herbal drugs. Medpharm Scientific Publishers, Stuttgart

    Google Scholar 

  • Brown D (1995) Encyclopaedia of herbs and their uses. Dorling Kindersley, London

    Google Scholar 

  • Brunner TJ, Wick P, Manser P, Spohn P, Grass RN, Limbach LK, Bruinink A, Stark WJ (2006) In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol 14:4374–4381

    Article  CAS  Google Scholar 

  • Campbell WH (2002) Higher plant nitrate reductase biochemistry. Physiol Mol Biol Plants 8:31–38

    Google Scholar 

  • Cao B, Ma Q, Zhao Q, Wang L, Xu K (2015) Effects of silicon on absorbed light allocation, antioxidant enzymes and ultrastructure of chloroplasts in tomato leaves under simulated drought stress. Sci Hort 194:53–62

    Article  CAS  Google Scholar 

  • Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12:564–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Croteau RB, Davis EM, Ringer KL, Wildung MR (2005) (-)-Menthol biosynthesis and molecular genetics. Naturwissenschaften 92:562

    Article  CAS  PubMed  Google Scholar 

  • Davenport S, Le Lay P, Sanchez-Tamburrrino JP (2015) Nitrate metabolism in tobacco leaves overexpressing Arabidopsis nitrite reductase. Plant Physiol Biochem 97:96–107

    Article  CAS  PubMed  Google Scholar 

  • de Sousa Barros A, de Morais SM, Ferreira PAT, Vieira ÍGP, Craveiro AA, Fontenelle dos Santos RO, de Menezes JESA, da Silva FWF, de Sousa HA (2015) Chemical composition and functional properties of essential oils from Mentha species. Ind Crop Prod 76:557–564

    Article  CAS  Google Scholar 

  • Doares SH, Syrovets T, Weiler EW, Ryan CA (1995) Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway. Proc Natl Acad Sci USA 92:4095–4098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudareva N, Pichersky E (2000) Biochemical and molecular genetic aspects of floral scents. Plant Physiol 122:627–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardiner P (2000) Lemon balm (Melissa officinalis). Longwood Herbal Task Force

  • Fahn A (1979) Secretory tissues in plants. Academic Press, New York, pp 162–164

    Google Scholar 

  • Foster S (1990) Peppermint Mentha piperita L. Botanical series. American Botanical Council, Austin, TX, p 306

    Google Scholar 

  • Gong H, Chen K (2012) The regulatory role of silicon on water relations, photosynthetic gas exchange, and carboxylation activities of wheat leaves in field drought conditions. Acta Physiol Plant. 34:1589–1594

    Article  CAS  Google Scholar 

  • Gershenzon J, Maffei M, Croteau R (1989) Biochemical and histochemical localization of monoterpene biosynthesis in the glandular trichomes of spearmint (Mentha spicata). Plant Physiol 89:1351–1357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gershenzon J, McConkey M, Croteau R (2000) Regulation of monoterpene accumulation in leaves of peppermint. Plant Physiol 122:205–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guenther E (1948) The essential oils. D. Van Nostrand, New York

    Google Scholar 

  • Guenther E (1972) The essential oils: history-origin in plants production-analysis (1) Huntington. Robert E. Krieger Publishing Company, New York

    Google Scholar 

  • Haghighi M, Zahra A, Maryam M (2012) The effect of N-Si on tomato seed germination under salinity levels. J Biol Environ Sci 6:16

    Google Scholar 

  • Hallahan DL (2000) Monoterpenoid biosynthesis in glandular trichomes of labiate plants. Adv Bot Res 31:77–120

    Article  CAS  Google Scholar 

  • Hawthorn M, Ferrante J, Luchowski E, Rutledge A, Wei XY, Triggle DJ (1988) The actions of peppermint oil and menthol on calcium channel dependent processes in intestinal, neuronal and cardiac preparations. Aliment Pharmacol Ther 2:101–118

    Article  CAS  PubMed  Google Scholar 

  • Hendriks H (1998) Pharmaceutical aspects of some Mentha herbs and their essential oils. Perfum Flavor 23:15–23

    CAS  Google Scholar 

  • Kalteh M, Alipour ZT, Ashraf S, Aliabadi MM, Nosratabadi AF (2014) Effect of silica nanoparticles on basil (Ocimum basilicum) under salinity stress. J Chem. Health Risks 4:49–55

    CAS  Google Scholar 

  • Karimi J, Mohsenzadeh S (2016) Effects of silicon oxide nanoparticles on growth and physiology of wheat seedlings. Russ J Plant Physiol 63:119–123

    Article  CAS  Google Scholar 

  • Karunakarana G, Suriyaprabha R, Manivasakana P, Rajendrana V, Kannanb N (2014) Influence of nano and bulk SiO2 and Al2O3 particles on PGPR and soil nutrient contents. Current Nanosci 10:604–612

    Article  CAS  Google Scholar 

  • Lawrence BM (2007) Mint: the genus Mentha. CRC Press, Boca Raton, FL

    Google Scholar 

  • Lichtenthaler HK, Buschmann C (2001) Chlorophylls and carotenoids: measurement and characterization by UV-Vis spectroscopy. John Wiley and Sons, New York

    Google Scholar 

  • Lillo C, Meyer C, Lea U, Provan F, Oltedal S (2004) Mechanisms and importance of post-translational regulation of nitrate reductase. J Exp Bot 55:1275–1282

    Article  CAS  PubMed  Google Scholar 

  • Lindner RC (1944) Rapid analytical methods for some of the more common inorganic constituents of the plant tissues. Plant Physiol 19:76–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C, Li F, Luo C, Liu X, Wang S, Liu T, Li X (2009) Foliar application of two silica sols reduced cadmium accumulation in race grains. J Hazard Mater 161:1466–1472

    Article  CAS  PubMed  Google Scholar 

  • Lu CM, Zhang CY, Wen JQ, Wu GR, Tao MX (2002) Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Science 21:168–172

    CAS  Google Scholar 

  • Maffei M, Gallino M, Sacco T (1986) Glandular trichomes and essential oils of developing leaves in Mentha viridis lavanduliodora. Planta Med 52:187–193

    Article  Google Scholar 

  • McCaskill D, Gershenzon J, Croteau R (1992) Morphology and monoterpene biosynthetic capabilities of secretory cell clusters isolated from glandular trichomes of peppermint (Mentha piperita L.). Planta 187:445–454

    Article  CAS  PubMed  Google Scholar 

  • Mishra V, Mishra RK, Dikshit A, Pandey AC (2014) Interactions of nanoparticles with plants: an emerging prospective in the agriculture industry. In: Ahmad P, Rasool S (eds) Emerging technologies and management of crop stress tolerance: biological techniques, vol 1. Elsevier, Amsterdam, pp 159–180

    Chapter  Google Scholar 

  • Morteza E, Moaveni P, Morteza T, Saemi H, Joorabloo A (2015) Effects of TiO2 (nano and bulk) foliar application on physiological traits and grain yield of Safflower (Carthamus tinctorius L.). In: Biological Forum, vol. 7. Research Trend, p. 1725

  • Novozamsky I, Houba VJG, van Eck R, van Vark W (1983) A novel digestion technique for multi-element plant analysis. Commun Soil Sci Plant Anal 14:239–248

    Article  CAS  Google Scholar 

  • Pattnaik S, Subramanyam VR, Bapaji M, Kole CR (1997) Antibacterial and antifungal activity of aromatic constituents of essential oils. Microbios 89:39–46

    CAS  PubMed  Google Scholar 

  • Pei ZF, Ming DF, Liu D, Wan GL, Geng XX, Gong HJ, Zhou WJ (2010) Silicon improves the tolerance to water-deficit stress induced by polyethylene plycol in wheat (Triticum aestivum L.) seedlings. J Plant Growth Regul 29:106–115

    Article  CAS  Google Scholar 

  • Pytlakowska K, Kita A, Janoska P, Połowniak M, Kozik V (2012) Multi-element analysis of mineral and trace elements in medicinal herbs and their infusions. Food Chem 135:494–501

    Article  CAS  PubMed  Google Scholar 

  • Rios JA, Rodrigues FA, Debona D, Silva LC (2014) Photosynthetic gas exchange in leaves of wheat plants supplied with silicon and infected with Pyricularia oryzae. Acta Physiol Plant 36:371–379

    Article  CAS  Google Scholar 

  • Robbers JE, Tyler VE (1999) Tyler’s herbs of choice: the therapeutic use of phytomedicinals. Haworth Herbal Press, New York, p 287

    Google Scholar 

  • Roco MC, Harthorn B, Guston D, Shapira P (2011) Innovative and responsible governance of nanotechnology for societal development. J Nanopart Res 13:3557–3590

    Article  Google Scholar 

  • Sadasivam S, Manickam A (2008) Biochemical Methods, 3rd edn. New Age International (P) Ltd Publishers, New Delhi

    Google Scholar 

  • Schwarz M (1994) Ph.D. Thesis, Eidgeno¨ssische Technische Hochschule, Switzerland

  • Shabbir A, Khan MMA, Sadiq Y, Jaleel H, Ahmad B, Uddin M (2017) Regulation of functional activities and essential oil production in Vetiveria zizanioides L. Nash after γ-irradiated sodium alginate elicitation. Turk J Biol 41:661–672

    Article  CAS  Google Scholar 

  • Sherameti I, Sopory SK, Trebicka A, Pfannschmidt T, Oelmüller R (2002) Photosynthetic electron transport determines nitrate reductase gene expression and activity in higher plants. J Biol Chem 277:46594–46600

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Wang Y, Flowers TJ, Gong H (2013) Silicon decreases chloride transport in rice (Oryza sativa L.) in saline conditions. J Plant Growth Regul 170:847–853

    CAS  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Faisal M, Al-Sahli AA (2014) Nano-silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L. Environ Toxicol Chem 33:2429–2437

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Firoz M, Al-Khaishany MY (2015) Role of nanoparticles in plants. Nanotechnology and Plant Sciences. Springer International Publishing, Cham, pp 19–35

    Google Scholar 

  • Singh N, Luthra R, Sangwan RS (1990) Oxidative pathways and essential oil biosynthesis in the developing lemon grass (Cymbopogon flexuosus) leaf. Plant Physiol Biochem 28:703–710

    CAS  Google Scholar 

  • Slomberg DL, Schoenfisch MH (2017) Silica nanoparticle phytotoxicity to Arabidopsis thaliana. Environ Sci Technol 46:10247–10254

    Article  CAS  Google Scholar 

  • Souza MP, Matos NEO, Matos FJA (1991) Constituintes Químicos de Plantas Medicinais Brasileiras. Imprensa Universitária/UFC, Fortaleza

    Google Scholar 

  • Suriyaprabha R, Karunakaran G, Yuvakkumar R, Rajendran V, Kannan N (2012) Silica nanoparticles for increased silica availability in maize (Zea mays L.) seeds under hydroponic conditions. Curr Nanosci 8:902–908

    Article  CAS  Google Scholar 

  • Swamy KN, Rao SSR (2009) Effect of 24-epibrassinolide on growth, photosynthesis, and essential oil content of Pelargonium graveolens (L.) herit. Russ J Plant Physiol 56:616–620

    Article  CAS  Google Scholar 

  • Szymczycha-Madeja A, Welna M, Zyrnicki W (2013) Multi-element analysis, bioavailability and fractionation of herbal tea products. J Brazil Chem Soc 24:777–787

    CAS  Google Scholar 

  • Tripathi DK, Singh VP, Prasad SM, Chauhan DK, Dubey NK (2015) Silicon nanoparticles (SiNp) alleviate chromium (VI) phytotoxicity in Pisum sativum (L.) seedlings. Plant Physiol Biochem 96:189–198

    Article  CAS  PubMed  Google Scholar 

  • Tripathi DK, Singh S, Singh VP, Prasad SM, Chauhan DK, Dubey NK (2016) Silicon nanoparticles more efficiently alleviate arsenate toxicity than silicon in maize cultivar and hybrid differing in arsenate tolerance. Front Environ Sci 4:46

    Article  Google Scholar 

  • Tripathi DK, Singh S, Singh VP, Prasad SM, Dubey NK, Chauhan DK (2017) Silicon nanoparticles more effectively alleviated UV-B stress than silicon in wheat (Triticum aestivum) seedlings. Plant Physiol Biochem 110:70–81

    Article  CAS  PubMed  Google Scholar 

  • Turner G, Gershenzon J, Nielson EE, Froehlich JE, Croteau R (1999) Limonene synthase responsible for monoterpene biosynthesis in peppermint is localized to leucoplasts of oil gland secretory cells. Plant Physiol 120:879–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uribe E, Marín D, Vega-Gálvez A, Quispe-Fuentes I, Rodríguez A (2016) Assessment of vacuum-dried peppermint (Mentha piperita L.) as a source of natural antioxidants. Food Chem 190:559–565

    Article  CAS  PubMed  Google Scholar 

  • Van de Braak SAAJ, Leijten GCJJ (1999) Essential oils and oleoresins: a survey in the Netherlands and other major markets in the European Union. CBI, Centre for the Promotion of Imports from Developing Countries, Rotterdam, p 116

    Google Scholar 

  • Walker TS, Pal-Bais H, Vivanco JM (2002) Jasmonic acid-induced hypericin production in cell suspension cultures of Hypericum perforatum L. (St. John’s wort). Phytochem 60:289–293

    Article  CAS  Google Scholar 

  • Whitesides GM (2005) Nanoscience, nanotechnology, and chemistry. Small 1:172–179

    Article  CAS  PubMed  Google Scholar 

  • Wise ML, Croteau R (1999) Biosythesis of monoterpenes. In: Cane DE (ed) Comprehensive Natural Products Chemistry, vol 2. Isoprenoids Including Carotenoids and Steroids. Elsevier, Oxford, pp 97–153

    Chapter  Google Scholar 

  • Xie Y, Li B, Zhang Q, Zhang C (2012) Effects of nano-silicon dioxide on photosynthetic fluorescence characteristics of Indocalamus barbatus McClure. J. Nanjing Forest Univ (Natural Sciences Edition) 2:59–63

    Google Scholar 

  • Yang F, Hong F, You W, Liu C, Gao F, Wu C, Yang P (2006) Influence of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biol Trace Elem Res 110:179–190

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Moutinho-Pereira JM, Correia C, Coutinho J, Gonçalves A, Guedes A, Gomes-Laranjo J (2013) Foliar application of Sili-K increases chestnut (Castanea spp.) growth and photosynthesis, simultaneously increasing susceptibility to water deficit. Plant Soil 365:211–225

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are highly grateful to Department of Chemical Engineering, King Saud University, Riyadh for providing SiNPs. Thanks are also due to CIMAP, Lucknow, India for providing authentic planting material to carry out experimental studies and University Sophisticated Instrumentation Facility (USIF), Aligarh Muslim University, Aligarh, India for the conduction of the SEM analysis of samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bilal Ahmad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

344_2019_9986_MOESM1_ESM.jpg

Supplementary material 1—Scanning Electron Microscopic image of silicon nanoparticles (a) Elemental analysis (b) Elemental analysis of SiNPs showing weight % (37.88%) and atomic % (25.78%) of silicon in the nanomaterial used. (JPEG 622 kb)

344_2019_9986_MOESM2_ESM.jpg

Supplementary material 2—Scanning Electron Microscopic image of control plant (a) and best treatment (SiNP-100) (b) showing the peltate glandular trichomes. (JPEG 684 kb)

344_2019_9986_MOESM3_ESM.jpg

Supplementary material 3—Influence of foliar applied silicon nanoparticles on the performance of peppermint. (JPEG 307 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, B., Khan, M.M.A., Jaleel, H. et al. Silicon Nanoparticles Mediated Increase in Glandular Trichomes and Regulation of Photosynthetic and Quality Attributes in Mentha piperita L.. J Plant Growth Regul 39, 346–357 (2020). https://doi.org/10.1007/s00344-019-09986-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-019-09986-x

Keywords

Navigation