Skip to main content

Plant Response to Silicon Nanoparticles: Growth Performance and Defense Mechanisms

  • Chapter
  • First Online:
Nanomaterials and Nanocomposites Exposures to Plants

Part of the book series: Smart Nanomaterials Technology ((SNT))

Abstract

Silicon is recognized as a quasiessential element for plants that has proven to be crucial for plant growth and development. Silicon regulates a number of physiological processes, such as vegetative growth, germination, photosynthesis and stress tolerance in plants. Despite its known advantages, the optimal utilization of silicon is challenged by scarcity of readily-available monosilicic acid in soil and low efficiency shown by silicon based fertilizers. This has led to the exploration of alternative systems to ensure silicon availability to the plants. Nanotechnology has proven to be extremely useful in overcoming this shortfall of traditional agriculture system by developing silicon nanoparticles. These nanosized silicon-based particles have been effectively used to promote plant growth and plant defense mechanism, quality and yield of the plant. Several physical, chemical and biological methods have been designed to create silicon nanoparticles for different uses and their applications have been studied in a wide variety of plants. The present work is a compilation of studies performed on silicon nanoparticles, their development, usage and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Luyckx M, Hausman JF, Lutts S, Guerriero G (2017) Silicon and plants: current knowledge and technological perspectives. Front Plant Sci 8:411

    Article  Google Scholar 

  2. Alamri S, Hu Y, Mukherjee S, Aftab T, Fahad S, Raza A, Ahmad M, Siddiqui MH (2020) Silicon-induced postponement of leaf senescence is accompanied by modulation of antioxidative defense and ion homeostasis in mustard (Brassicajuncea) seedlings exposed to salinity and drought stress. Plant Physiol Biochem 157:47–59

    Google Scholar 

  3. Matichenkov VV, Bocharnikova EA, Calvert DV, Snyder GH (2000) Comparison study of soil silicon status in sandy soils of south Florida. In: Proceedings-soil and crop science society of florida. vol. 59, p. 132–137, Soil and Crop Science Society of Florida

    Google Scholar 

  4. Rao GB, Susmitha P (2017) Silicon uptake, transportation and accumulation in Rice. J Pharmacogn Phytochem 6(6):290–293

    CAS  Google Scholar 

  5. Roduner E (2006) Size matters: why nanomaterials are different. Chem Soc Rev 35(7):583–592

    Article  CAS  Google Scholar 

  6. Monica RC, Cremonini R (2009) Nanoparticles and higher plants. Caryologia 62(2):161–165

    Article  Google Scholar 

  7. Thiessen AN, Ha M, Hooper RW, Yu H, Oliynyk AO, Veinot JG, Michaelis VK (2019) Silicon nanoparticles: are they crystalline from the core to the surface? J Mater Chem 31(3):678–688

    Article  CAS  Google Scholar 

  8. Lian Y, Zhang W, Ding L, Zhang X, Zhang Y, Wang XD (2019) Nanomaterials for intracellular pH sensing and imaging. In: Novel nanomaterials for biomedical, environmental and energy applications, pp 241–273. Elsevier

    Google Scholar 

  9. Buyuknalcaci FN, Polat Y, Negawo TA, Döner E, Alam MS, Hamouda T, Kilic A (2018) Carbon nanotube-based nanocomposites for wind turbine applications In: Polymer-based nanocomposites for energy and environmental applications, pp 635–661. Woodhead Publishing

    Google Scholar 

  10. Greeesan R, Jegan J, Kannaki S, Dineshkumar S, Kayalvizhi A (2022) Investigations on ZnO reinforced composite materials for electronic applications–a review. Mater Today: Proceedings

    Google Scholar 

  11. Rastogi A, Zivcak M, Sytar O, Kalaji HM, He X, Mbarki S, Brestic M (2017) Impact of metal and metal oxide nanoparticles on plant: a critical review. Front Chem 5:78

    Google Scholar 

  12. Lehman SE, Mudunkotuwa IA, Grassian VH, Larsen SC (2016) Nano-bio interactions of porous and nonporous silica nanoparticles of varied surface chemistry: A structural, kinetic, and thermodynamic study of protein adsorption from RPMI culture medium. Langmuir: ACS J Surfs Colloids 32(3):731–742

    Article  CAS  Google Scholar 

  13. Baliś A, Zapotoczny S (2018) Tailored synthesis of core-shell mesoporous silica particles-optimization of dye sorption properties. Nanomaterials (Basel, Switzerland) 8(4):230

    Article  Google Scholar 

  14. Gawande MB, Goswami A, Asefa T, Guo H, Biradar AV, Peng DL, Zboril R, Varma RS (2015) Core–shell nanoparticles: synthesis and applications in catalysis and electrocatalysis. Chem Soc Rev 44(21):7540–90

    Google Scholar 

  15. Lee JY, Kim MK, Nguyen TL, Kim J (2020) Hollow mesoporous silica nanoparticles with extra-large mesopores for enhanced cancer vaccine. ACS Appl Mater Interfaces 12(31):34658–34666

    Article  CAS  Google Scholar 

  16. Husen A (2023a) Secondary metabolites based green synthesis of nanomaterials and their applications. Springer Nature Singapore, Singapore. https://doi.org/10.1007/978-981-99-0927-8

  17. Husen A (2022) Engineered nanomaterials for sustainable agricultural production, soil improvement and stress management. Elsevier Inc., 50 Hampshire St., 5th Floor, Cambridge, MA 02139, USA

    Google Scholar 

  18. Husen A, Jawaid M (2020) Nanomaterials for agriculture and forestry applications. Elsevier Inc., 50 Hampshire St., 5th Floor, Cambridge, MA 02139, USA https://doi.org/10.1016/C2018-0-02349-X

  19. Jin-Chul K, Madhusudhan A, Husen A (2021) Smart nanomaterials in biomedical applications. Springer Nature Switzerland AG, Gewerbestrasse 11, 6330 Cham, Switzerland

    Google Scholar 

  20. Ditta A (2012) How helpful is nanotechnology in agriculture? Adv Nat Sci Nanosci Nanotechnol 3(3):033002

    Article  Google Scholar 

  21. Husen A, Siddiqi KS (2014) Phytosynthesis of nanoparticles: Concept, controversy and application. Nanoscale Res Lett 9(229):1–24

    CAS  Google Scholar 

  22. Husen A (2020a) Interactions of metal and metal-oxide nanomaterials with agricultural crops: An overview. In: Husen A, Jawaid M (eds) Nanomaterials for agriculture and forestry applications. Elsevier Inc. 50 Hampshire St., 5th Floor, Cambridge, MA 02139, USA, pp 167–197 https://doi.org/10.1016/B978-0-12-817852-2.00007-X

  23. Husen A (2020b) Carbon-based nanomaterials and their interactions with agricultural crops. In: Husen A, Jawaid M (eds) Elsevier Inc. 50 Hampshire St., 5th Floor, Cambridge, MA 02139, USA, pp 199–218 https://doi.org/10.1016/B978-0-12-817852-2.00008-1

  24. Husen A, Iqbal M (2019) Nanomaterials and plant potential. Springer International Publishing AG, Gewerbestrasse 11, 6330 Cham, Switzerland. https://doi.org/10.1007/978-3-030-05569-1

  25. Kumar A, Choudhary A, Kaur H, Guha S, Mehta S, Husen A (2022) Potential applications of engineered nanoparticles in plant disease management: A critical update. Chemosphere 295:133798

    Article  CAS  Google Scholar 

  26. Kumar A, Choudhary A, Kaur H, Mehta S, Husen A (2021) Smart nanomaterial and nanocomposite with advanced agrochemical activities. Nanoscale Res Lett 16(156):1–26

    Google Scholar 

  27. Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Article  CAS  Google Scholar 

  28. Sharma P, Pandey V, Sharma MMM, Patra A, Singh B, Mehta S, Husen A (2021) A review on biosensors and nanosensors application in agroecosystems. Nano Res Lett 16:136. https://doi.org/10.1186/s11671-021-03593-0

    Article  Google Scholar 

  29. Siddiqi KS, Husen A (2022) Plant response to silver nanoparticles: A critical review. Crit Rev Biotechnol 42(7):773–990. https://doi.org/10.1080/07388551.2021.1975091

    Article  CAS  Google Scholar 

  30. Dhakate P, Kandhol N, Raturi G, Ray P, Bhardwaj A, Srivastava A, Kaushal L, Singh A, Pandey S, Chauhan DK, Dubey NK (2022) Silicon nanoforms in crop improvement and stress management. Chemosphere 305:135165

    Article  CAS  Google Scholar 

  31. Mukarram M, Khan MM, Corpas FJ (2021) Silicon nanoparticles elicit an increase in lemongrass (Cymbopogon flexuosus (Steud.) Wats) agronomic parameters with a higher essential oil yield. J Hazard Mater 412: 125254

    Google Scholar 

  32. Hopkins JB, Langridge-Smith PRR, Morse MD, Smalley RE (1983) J Chem Phys 78:1627

    Article  CAS  Google Scholar 

  33. Powers DE, Hansen SG, Geusic ME, Puiu AC, Hopkins JB, Dietz TG, Duncan MA (1982) Langridge-Smith PRR and Smalley RE. J Phys Chem 1982:86

    Google Scholar 

  34. Lam C, Zhang YF, Tang YH, Lee CS, Bello I, Lee ST (2000) J Cryst Growth 220–466

    Google Scholar 

  35. English DS, Pell LE, Yu ZH, Barbara PF, Korgel BA (2002) Nano Lett 2:681

    Article  CAS  Google Scholar 

  36. Selvarajan V, Obuobi S, Ee PL (2020) Silica nanoparticles—a versatile tool for the treatment of bacterial infections. Fron Chem 8:602

    Google Scholar 

  37. Shekar S, Sander M, Riehl RC, Smith AJ, Braumann A, Kraft M (2012) Modelling the flame synthesis of silica nanoparticles from tetraethoxysilane. Chem Eng Sci 70:54–66

    Article  CAS  Google Scholar 

  38. Kammler HK, Pratsinis SK, Morrison Jr PW, Hemmerling B (2002) Flame temperature measurements during electrically assisted aerosol synthesis of nanoparticles. Combust Flame128(4):369–381

    Google Scholar 

  39. Rahman IA, Padavettan V (2012) Synthesis of silica nanoparticles by sol-gel: size-dependent properties, surface modification, and applications in silica-polymer nanocomposites—a review. J nanometer 2012:8–8

    Google Scholar 

  40. Yano S, Iwata K, Kurita K (1998) Physical properties and structure of organic-inorganic hybrid materials produced by sol-gel process. Mater Sci Eng C6(2–3):75–90

    Article  CAS  Google Scholar 

  41. Zhang H, Yang D, Ji Y, Ma X, Xu J, Que D (2004) Low temperature synthesis of flowerlike ZnO nanostructures by cetyltrimethylammonium bromide-assisted hydrothermal process. J Phys Chem B 108:3955–3958

    Article  CAS  Google Scholar 

  42. Nagarale RK, Shina W, Singh PK (2010) Progress in ionic organic-inorganic composite membranes for fuel cell applications. Polym Chem 1:388–408

    Article  CAS  Google Scholar 

  43. San NO, Kurşungöz C, Tümtaş Y, Yaşa Ö, Ortac B, Tekinay T (2014) Novel one-step synthesis of silica nanoparticles from sugarbeet bagasse by laser ablation and their effects on the growth of freshwater algae culture. Particuology 17:29–35

    Google Scholar 

  44. Mohd NK, Wee NNAN, Azmi, AA (2017) Green synthesis of silica nanoparticles using sugarcane bagasse. In: AIP conference proceedings, vol. 1885, no. 1, p 020123. AIP Publishing LLC

    Google Scholar 

  45. Bose S, Ganayee MA, Mondal B, Baidya A, Chennu S, Mohanty JS, Pradeep T (2018) Synthesis of silicon nanoparticles from rice husk and their use as sustainable fluorophores for white light emission. ACS Sustain Chem Eng 6(5):6203–6210

    Article  CAS  Google Scholar 

  46. Kumar V, Tiwari P, Krishnia L, Kumari R, Singh A, Ghosh A, Tyagi K, P, (2016) Green route synthesis of silicon/silicon oxide from bamboo. Adv Mater Lett 7(4):271–276

    Article  CAS  Google Scholar 

  47. Adinarayana TV, Mishra A, Singhal I, Reddy DR (2020) Facile green synthesis of silicon nanoparticles from Equisetum arvense for fluorescence based detection of Fe (III) ions. Nanoscale Adv 2(9):4125–4132

    Article  CAS  Google Scholar 

  48. Shenton W, Douglas T, Young M, Stubbs G, Mann S (1999) Inorganic–organic nanotube composites from template mineralization of tobacco mosaic virus. Adv Mater 11(3):253–256

    Article  CAS  Google Scholar 

  49. Dann EK, Muir S (2002) Peas grown in media with elevated plantavailable silicon levels have higher activities of chitinase and β-1, 3-glucanase, are less susceptible to a fungal leaf spot pathogen and accumulate more foliar silicon. Australas. Plant Pathol. 31:9–13

    Google Scholar 

  50. Hamayun M, Sohn EY, Khan SA, Shinwari ZK, Khan AL, Lee IJ (2010) Silicon alleviates the adverse effects of salinity and drought stress on growth and endogenous plant growth hormones of soybean (Glycinemax L.). Pak J Bot 42(3): 1713–22

    Google Scholar 

  51. Asgari F, Majd A, Jonoubi P, Najafi F (2018) Effects of silicon nanoparticles on molecular, chemical, structural and ultrastructural characteristics of oat (Avena sativa L.). Plant Physiol Biochem 127:152–160

    Article  CAS  Google Scholar 

  52. Mushtaq A, Jamil N, Rizwan S, Mandokhel F, Riaz M, Hornyak GL, Malghani MN, Shahwani MN (2018) Engineered silica nanoparticles and silica nanoparticles containing controlled release fertilizer for drought and saline areas. IOP Conference Series. Mater Sci Eng 414(1):012029

    Google Scholar 

  53. Zhou X, Shen Y, Fu X, Wu F (2018) Application of sodium silicate enhances cucumber resistance to Fusarium wilt and alters soil microbial communities. Front Plant Sci 9:624

    Article  Google Scholar 

  54. Amkha S, Rungcharoenthong P (2020) Effect of calcium silicate on number of trichomes, leaf thickness and chlorophyll in tomato. In: III Asian Horticultural Congress-AHC2020 1312 pp 249–254

    Google Scholar 

  55. Elsheery NI, Helaly MN, El-Hoseiny HM, Alam-Eldein SM (2020) Zinc Oxide and Silicone nanoparticles to improve the resistance mechanism and annual productivity of salt-stressed mango trees. Agronomy 2020 10(4):558

    Google Scholar 

  56. Udalova ZV, Folmanis GE, Fedotov MA, Pelgunova LA, Krysanov EY, Khasanov FK, Zinovieva SV (2020) Effects of silicon nanoparticles on photosynthetic pigments and biogenic elements in tomato plants infected with root-knot nematode Meloidogyne incognita. In: Dokl Biochem Biophys. vol. 495, pp 329–333. Pleiades Publishing

    Google Scholar 

  57. Rashad YM, El-Sharkawy HH, Belal BE, Abdel Razik ES, Galilah DA (2021) Silica nanoparticles as a probable anti-oomycete compound against downy mildew, and yield and quality enhancer in grapevines: field evaluation, molecular, physiological, ultrastructural, and toxicity investigations. Front Plant Sci 12:763365

    Article  Google Scholar 

  58. Wang L, Pan T, Gao X, An J, Ning C, Li S, Cai K (2022) Silica nanoparticles activate defense responses by reducing reactive oxygen species under Ralstonia solanacearum infection in tomato plants. NanoImpact 28:100418

    Article  CAS  Google Scholar 

  59. Hassan IF, Ajaj R, Gaballah MS, Ogbaga CC, Kalaji HM, Hatterman‐Valenti HM, Alam‐Eldein SM (2022) Foliar application of nano‐silicon improves the physiological and biochemical characteristics of ‘Kalamata’ olive subjected to deficit irrigation in a Semi‐Arid climate. Plants 11(12): 1561

    Google Scholar 

  60. Almutairi ZM (2016) Effect of nano-silicon application on the expression of salt tolerance genes in germinating tomato (‘Solanum lycopersicum’ L.) seedlings under salt stress. Plant Omics 9(1): 106–14

    Google Scholar 

  61. Lu C, Zhang C, Wen J, Wu G, Tao M (2002) Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Sci 21(3):168–171

    Google Scholar 

  62. Bao-Shan L, shao-qi D, Chun-Hui L, Li-Jun F, Shu-Chun Q, Min Y (2004) Effect of TMS (nanostructured silicon dioxide) on growth of Changbai larch seedlings J For Res 15:138–40

    Google Scholar 

  63. Suriyaprabha R, Karunakaran G, Yuvakkumar R, Prabu P, Rajendran V, Kannan N (2012) Growth and physiological responses of maize (Zea mays L.) to porous silica nanoparticles in soil. J Nanoparticle Res 14:1–4

    Article  Google Scholar 

  64. Siddiqui MH, Al-Whaibi MH, Faisal M, Al Sahli AA (2014) Nano-silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L. Environ Toxicol Chem 33(11):2429–2437

    Article  CAS  Google Scholar 

  65. Azimi R, Borzelabad MJ, Feizi H, Azimi A (2014) Interaction of SiO2 nanoparticles with seed prechilling on germination and early seedling growth of tall wheatgrass (Agropyron elongatum L.). Pol J Chem Technol 16(3): 25–29

    Google Scholar 

  66. Adhikari T, Kundu S, Rao AS (2013) Impact of SiO2 and Mo nano particles on seed germination of rice (Oryza sativa L.). Int J Agric Food Sci Technol 4(8): 809–816

    Google Scholar 

  67. Janmohammadi M, Sabaghnia N (2015) Effect of pre-sowing seed treatments with silicon nanoparticles on germinability of sunflower (Helianthus annuus). Bot Lith 21(1):13–21

    Google Scholar 

  68. Emamverdian A, Ding Y, Mokhberdoran F, Ahmad Z, Xie Y (2021) The effect of silicon nanoparticles on the seed germination and seedling growth of Moso Bamboo (Phyllostachys edulis) under Cadmium Stress. Pol J Environ Stud 30(4)

    Google Scholar 

  69. Li B, Tao G, Xie Y, Cai X (2012) Physiological effects under the condition of spraying nano-SiO2 onto the Indocalamus barbatus McClure leaves. J Nanjing Univ (Nat Sci Ed) 36(4):161–164

    Google Scholar 

  70. Putri FM, Suedy SWA, Darmanti S (2017) The effects of nano-silica fertilizer on the number of stomata, chlorophyll content and growth of black rice Oryza sativa L. Cv. Japonica. Available online: https://www.ejournal.undip.ac.id/indek.php/baf/index

  71. Karimi J, Mohsenzadeh S (2016) Effects of silicon oxide nanoparticles on growth and physiology of wheat seedlings. Russ J Plant Physiol 63(1):119–123

    Google Scholar 

  72. Fitriani HP, Haryanti (2016) Effect of the use of nanosilica fertilizer on the growth of tomato plant (Solanum lycopersicum). Bul Anat dan Fisiol 24(1):34–41

    Google Scholar 

  73. Yassen A, Abdallah E, Gaballah M, Zaghloul S (2017) Role of Silicon dioxide nano fertilizer in mitigating salt stress on growth, yield and chemical composition of Cucumber (Cucumis sativus L.). Int J Agric Res 22:130–135

    Google Scholar 

  74. Sharifi RJ, Sharifirad M, Teixeira DSJ (2016) Morphological, physiological and biochemical responses of crops (Zea mays L., Phaseolus vulgaris L.), medicinal plants (Hyssopus officinalis L., Nigella sativa L.), and weeds (Amaranthus retroflexus L., Taraxacum officinale FH Wigg) exposed to SiO2 nanoparticles. J Agric Sci Technol 18:1027–1040

    Google Scholar 

  75. Xie Y, Li B, Tao G, Zhang Q, Zhang C (2012) Effects of nano-silicon dioxide on photosynthetic fluorescence characteristics of Indocalamus barbatus McClure. J Nanjing For Univ (Natural Sciences Edition) 36(2):59–63

    Google Scholar 

  76. Ahmad B, Khan MM, Jaleel H, Shabbir A, Sadiq Y, Uddin M (2020) Silicon nanoparticles mediated increase in glandular trichomes and regulation of photosynthetic and quality attributes in Mentha piperita L. J Plant Growth Regul 39:346–57

    Google Scholar 

  77. Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17(8):478–86

    Google Scholar 

  78. Santos LF, Olivares FL (2021) Plant microbiome structure and benefits for sustainable agriculture. Curr Plant Biol 26:100198

    Google Scholar 

  79. Kour D, Kaur T, Devi R, Yadav A, Singh M, Joshi D, Singh J, Suyal DC, Kumar A, Rajput VD, Yadav AN (2021) Beneficial microbiomes for bioremediation of diverse contaminated environments for environmental sustainability: present status and future challenges. Environ Sci Pollut Res 28:24917–39

    Google Scholar 

  80. Barea JM, Pozo MJ, Azcon R, Azcon-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56(417):1761–78

    Google Scholar 

  81. Theng BK, Yuan G (2008) Nanoparticles in the soil environment. Elements 4(6):395–9

    Google Scholar 

  82. Tian L, Shen J, Sun G, Wang B, Ji R, Zhao L (2020) Foliar application of SiO2 nanoparticles alters soil metabolite profiles and microbial community composition in the pakchoi (Brassica chinensis L.) rhizosphere grown in contaminated mine soil. Environ Sci Tech 54(20): 13137–46

    Google Scholar 

  83. Liu X, Li Q, Li Y, Guan G, Chen S (2019) Paenibacillus strains with nitrogen fixation and multiple beneficial properties for promoting plant growth. Peer J 7:e7445

    Google Scholar 

  84. Rajput VD, Minkina T, Kumari A, Singh VK, Verma KK, Mandzhieva S, Sushkova S, Srivastava S, Keswani C (2021) Coping with the challenges of abiotic stress in plants: new dimensions in the field application of nanoparticles. Plants 10(6):1221

    Google Scholar 

  85. Matysik J, Alia, Bhalu B, Mohanty P (2002) Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr Sci 10:525–32

    Google Scholar 

  86. Tripathi DK, Singh VP, Prasad SM, Chauhan DK, Dubey NK (2015) Silicon nanoparticles (SiNp) alleviate chromium (VI) phytotoxicity in Pisum sativum (L.) seedlings. Plant Physiol Biochem 96:189–98

    Google Scholar 

  87. Li Y, Zhu N, Liang X, Bai X, Zheng L, Zhao J, Li YF, Zhang Z, Gao Y (2020) Silica nanoparticles alleviate mercury toxicity via immobilization and inactivation of Hg (ii) in soybean (Glycine max). Environ Sci Nano 7(6):1807–17

    Google Scholar 

  88. Wang S, Wang F, Gao S (2015) Foliar application with nano-silicon alleviates Cd toxicity in rice seedlings. Environ Sci Pollut Res 22:2837–2845

    Article  CAS  Google Scholar 

  89. De Sousa A, Saleh AM, Habeeb TH, Hassan YM, Zrieq R, Wadaan MA, Hozzein WN, Selim S, Matos M, AbdElgawad H (2019) Silicon dioxide nanoparticles ameliorate the phytotoxic hazards of aluminum in maize grown on acidic soil. Sci Total Environ 693:133636

    Article  Google Scholar 

  90. González-Moscoso M, Juárez-Maldonado A, Cadenas-Pliego G, Meza-Figueroa D, SenGupta B, Martínez-Villegas N (2022) Silicon nanoparticles decrease arsenic translocation and mitigate phytotoxicity in tomato plants. Environ Sci Pollut Res 1–7

    Google Scholar 

  91. Bityutskii NP, Yakkonen KL, Petrova AI, Shavarda AL (2017) Interactions between aluminium, iron and silicon in Cucumber sativus L. grown under acidic conditions. J Plant Physiol 218:100–108

    Article  CAS  Google Scholar 

  92. Dorneles AO, Pereira AS, Sasso VM, Possebom G, Tarouco CP, Schorr MR, Rossato L, Ferreira PA, Tabaldi LA (2019) Aluminum stress tolerance in potato genotypes grown with silicon. Bragantia 78:12–25

    Article  CAS  Google Scholar 

  93. Iwasaki K, Maier P, Fecht M, Horst WJ (2002) Effects of silicon supply on apoplastic manganese concentrations in leaves and their relation to manganese tolerance in cowpea (Vigna unguiculata (L.) Walp.). Plant Soil 238:281–288

    Article  CAS  Google Scholar 

  94. Dragišić-Maksimović J, Mojović M, Maksimović V (2016) Silicon facilitates manganese phytoextraction by cucumber (Cucumis sativus L.). Zaštitamaterijala 57(3): 424–9

    Google Scholar 

  95. Fatemi H, Pour BE, Rizwan M (2020) Isolation and characterization of lead (Pb) resistant microbes and their combined use with silicon nanoparticles improved the growth, photosynthesis and antioxidant capacity of coriander (Coriandrum sativum L.) under Pb stress. Environ Pollut 266: 114982

    Google Scholar 

  96. Wu J, Guo J, Hu Y, Gong H (2015) Distinct physiological responses of tomato and cucumber plants in silicon-mediated alleviation of cadmium stress. Front Plant Sci 6:453

    Article  Google Scholar 

  97. Cui J, Liu T, Li F, Yi J, Liu C, Yu H (2017) Silica nanoparticles alleviate cadmium toxicity in rice cells: mechanisms and size effects. Environ Pollut 228:363–369

    Article  CAS  Google Scholar 

  98. Sharma A, Vishwakarma K, Singh NK, Prakash V, Ramawat N, Prasad R, Sahi S, Singh VP, Tripathi DK, Sharma S (2022) Synergistic action of silicon nanoparticles and indole acetic acid in alleviation of chromium (CrVI) toxicity in Oryza sativa seedlings. J Biotech 343:71–82

    Article  CAS  Google Scholar 

  99. Sharma A, Kapoor D, Wang J, Shahzad B, Kumar V, Bali AS, Jasrotia S, Zheng B, Yuan H, Yan D (2020) Chromium bioaccumulation and its impacts on plants: an overview. Plants 9(1):100

    Google Scholar 

  100. Tripathi DK, Rai P, Guerriero G, Sharma S, Corpas FJ, Singh VP (2021) Silicon induces adventitious root formation in rice under arsenate stress with involvement of nitric oxide and indole-3-acetic acid. J Exp Bot 72(12):4457–4471

    Article  CAS  Google Scholar 

  101. Jingwen Y, Xiyue Y, Li C, Ayaz M, Abdulsalam S, Peng D, Qi R, Peng H, Kong L, Jia J, Huang W (2022) Silicon mediated plant immunity against nematodes: Summarizing the underline defence mechanisms in plant nematodes interaction. Int J Mol Sci 23(22):14026

    Article  Google Scholar 

  102. Wang L, Pan T, Gao X, An J, Ning C, Li S, Cai K (2022) Silica nanoparticles activate defense responses by reducing reactive oxygen species under Ralstonia solanacearum infection in tomato plants. NanoImpact 28:100418

    Google Scholar 

  103. Khan MR, Siddiqui ZA (2020) Use of silicon dioxide nanoparticles for the management of Meloidogyne incognita, Pectobacterium betavasculorum and Rhizoctonia solani disease complex of beetroot (Beta vulgaris L.). Sci Hortic 265: 109211

    Google Scholar 

  104. Kang H, Elmer W, Shen Y, Zuverza-Mena N, Ma C, Botella P, White JC, Haynes CL (2021) Silica nanoparticle dissolution rate controls the suppression of fusarium wilt of watermelon (Citrullus lanatus). Environ Science Tech 55(20):13513–13522

    Article  CAS  Google Scholar 

  105. Samuels AL, Glass AD, Ehret DL, Menzies JG (1991) Distribution of silicon in cucumber leaves during infection by powdery mildew fungus (Sphaerothecafuliginea). Canad J Bot 69(1):140–146

    Article  CAS  Google Scholar 

  106. Guo Y, Liu L, Zhao J, Bi Y (2007) Use of silicon oxide and sodium silicate for controlling Trichotheciumroseum postharvest rot in Chinese cantaloupe (Cucumismelo L.). Int J Food Sci Technol 42(8): 1012–8

    Google Scholar 

  107. Suriyaprabha R, Karunakaran G, Kavitha K, Yuvakkumar R, Rajendran V, Kannan N (2014) Application of silica nanoparticles in maize to enhance fungal resistance. IET Nanobiotech 8(3):133–137

    Article  CAS  Google Scholar 

  108. Derbalah A, Shenashen M, Hamza A, Mohamed A, El Safty S (2018) Antifungal activity of fabricated mesoporous silica nanoparticles against early blight of tomato. Egypt. j. basic appl. sci. 5(2):145–150

    Google Scholar 

  109. Siddiqui H, Ahmed KB, Sami F, Hayat S (2020) Silicon nanoparticles and plants: Current knowledge and future perspectives. Sustainable Agriculture Reviews 41: Nanotechnology for Plant Growth and Development: 129–42

    Google Scholar 

  110. Ali S, Rizwan M, Hussain A, ur Rehman MZ, Ali B, Yousaf B, Wijaya L, Alyemeni MN, Ahmad P (2019) Silicon nanoparticles enhanced the growth and reduced the cadmium accumulation in grains of wheat (Triticumaestivum L.). Plant Physiol Biochem 140:1–8

    Google Scholar 

  111. Dann EK, Muir S (2002) Peas grown in media with elevated plant-available silicon levels have higher activities of chitinase and β-1, 3-glucanase, are less susceptible to a fungal leaf spot pathogen and accumulate more foliar silicon. Australas Plant Pathol 31:9–13

    Article  Google Scholar 

  112. Husen A (2023b) Nanomaterials from agricultural and horticultural products. Springer Nature Singapore, Singapore

    Google Scholar 

  113. Husen A, Siddiqi KS (2023) Advances in smart nanomaterials and their applications. Elsevier Inc., 50 Hampshire St., 5th Floor, Cambridge, MA 02139, USA

    Google Scholar 

  114. Du J, Liu B, Zhao T, Xu X, Lin H, Ji Y, Li Y, Li Z, Lu C, Li P, Zhao H, Li Y, Yin Z, Ding X (2022) Silica nanoparticles protect rice against biotic and abiotic stresses. J Nanobiotech 20(197)

    Google Scholar 

  115. Lee CW, Mahendra S, Zodrow K, Li D, Tsai YC, Braam J, Alvarez PJ (2010) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem: Int Journal 29(3):669–675

    Article  CAS  Google Scholar 

  116. Mushtaq A, Jamil N, Rizwan S, Mandokhel F, Riaz M, Hornyak GL, Najam Malghani M, Naeem Shahwani M (2018) Engineered silica nanoparticles and silica nanoparticles containing controlled release fertilizer for drought and saline areas. IOP Conf Ser: Mater Sci Eng 414: 012029

    Google Scholar 

  117. Elsheery NI, Helaly MN, El-Hoseiny HM, Alam-Eldein SM (2022) Zinc oxide and silicone nanoparticles to improve the resistance mechanism and annual productivity of salt-stressed mango trees. Agronomy 10(4): 558

    Google Scholar 

  118. Sharma A, Kapoor D, Wang J, Shahzad B, Kumar V, Bali AS, Jasrotia S, Zheng B, Yuan H, Yan D (2020) Chromium bioaccumulation and its impacts on plants: An overview. Plants 9(1):100

    Article  CAS  Google Scholar 

  119. Singh S, Bhatta UM, Satyam PV, Dhawan A, Sastry M, Prasad BL (2008) Bacterial synthesis of silicon/silica nanocomposites. J Mater Chem 18(22):2601–2606

    Article  CAS  Google Scholar 

  120. Slomberg DL, Schoenfisch MH (2012) Silica nanoparticle phytotoxicity to Arabidopsisthaliana. Environ Sci Technol 46(18):10247–10254

    Article  CAS  Google Scholar 

  121. Stober W, Fink A, Bohn EJ (1968) Colloid Interface Sci 26:62

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manu Pant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tina, Pal, V., Chauhan, K., Pant, K., Pant, G., Pant, M. (2023). Plant Response to Silicon Nanoparticles: Growth Performance and Defense Mechanisms. In: Husen, A. (eds) Nanomaterials and Nanocomposites Exposures to Plants. Smart Nanomaterials Technology. Springer, Singapore. https://doi.org/10.1007/978-981-99-2419-6_9

Download citation

Publish with us

Policies and ethics