Skip to main content
Log in

Alpha-Tocopherol-Induced Regulation of Growth and Metabolism in Plants Under Non-stress and Stress Conditions

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Alpha-tocopherol (α-Toc) is a member of the vitamin E family and is lipid soluble. Its biosynthesis is by the reaction of isopentyl diphosphate and homogentisic acid in plastid membranes. The putative biochemical activities of tocopherols are linked with the formation of tocopherol quinone species, which subsequently undergo degradation and recycling within cells/tissues. α-Toc plays a key role in a variety of plant metabolic processes throughout the ontogeny of plants. It can maintain the integrity and fluidity of photosynthesizing membranes. It can also neutralize lipid peroxy radicals, consequently blocking lipid peroxidation by quenching oxidative cations. It preserves membrane integrity by retaining membranous structural components under environmental constraints such as water deficiency, high salt content, toxic metals, high/low temperatures, and radiations. α-Toc also induces cellular signalling pathways within biological membranes. Its biosynthesis varies during growth and developmental stages as well as under different environmental conditions. The current review primarily focuses on how α-Toc can regulate various metabolic processes involved in promoting plant growth and development under stress and non-stress and how it can effectively counteract the stress-induced high accumulation of reactive oxygen species (ROS). Currently, exogenous application of α-Toc has been widely reported as a potential means of promoting resistance in plants to a variety of stressful environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbasi AR (2007) Functional analysis of tocopherol biosynthesis in plants. Ph.D thesis, Aus Tehran, Iran

  • Abdallah MM, Abdel-Monem AA, Hassanein RA, El-Bassiouny HMS (2013) Response of sunflower plant to the application of certain vitamins and Arbuscular mycorrhiza under different water regimes. Aust J Basic Appl Sci 7:915–932

    CAS  Google Scholar 

  • Abeer SI, Shafeek MR, Ahmed HI, Abdel-Al FS (2015) Improving growth, fruit setting, total yield and fruit quality of sweet pepper plants (Capsicum annum L.) by using antioxidant and seaweed extracts. Middle East J Agric Res 4(2):154–161

    Google Scholar 

  • Agholaghi MA, Sedghi M (2014) The effect of halo- and hydro-priming on germination characteristics of millet seeds under salinity stress. Cercetări Agron Maldova 47(2):41–48

    Google Scholar 

  • Albrecht E, Schmitz-Eiberger M, Brauckmann M, Rademacher W, Noga G (2004) Use of prohexadione-calcium, vitamin E, and glycerine for the reduction of frost injury in apple (Malus domestica) flowers and leaves. Europ J Hortic Sci 69:59–65

    CAS  Google Scholar 

  • Al-Qubaie AI (2012) Response of sunflowers cultivar Giza-102 (Helianthus annuus L.) plants to spraying some antioxidants. Nat Sci 10(11):1–6

    Google Scholar 

  • Arango Y, Heise KP (1998) Localization of α-tocopherol synthesis in chromoplast envelope membranes of Capsicum annuum L. fruits. J Exp Bot 49(324):1259–1262

    CAS  Google Scholar 

  • Arrom L, Munné-Bosch S (2010) Tocopherol composition in flower organs of lilium and its variations during natural and artificial senescence. Plant Sci 179(3):289–295

    CAS  Google Scholar 

  • Artetxe U, García-Plazaola JI, Hern´andez A, Becerril JM (2002) Low light grown duckweed plants are more protected against the toxicity induced by Zn and Cd. Plant Physiol Biochem 40:859–863

    CAS  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their function. Plant Physiol 141:391–396

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ashraf M, Foolad MR (2005) Pre-sowing seed treatment- a shotgun approach to improve germination, plant growth, and crop yield under saline and non-saline conditions. Adv Agron 88:223–271

    Google Scholar 

  • Ashraf M, Ahmad R, Bhatti AS, Afzal M, Sarwar A, Maqsood MA, Kanwal S (2010) Amelioration of salt stress in sugarcane (Saccharum officinarum L.) by supplying potassium and silicon in hydroponics. Pedosphere 20(2):153–162

    CAS  Google Scholar 

  • Aslam M, Sultana B, Anwar F, Munir H (2016) Foliar spray of selected plant growth regulators affected the biochemical and antioxidant attributes of spinach in a field experiment. Turk J Agric Fores 40(2):136–145

    CAS  Google Scholar 

  • Atkinson J, Epand RF, Epand RM (2008) Tocopherols and tocotrienols in membranes: a critical review. Free Radic Biol Med 44:739–764

    CAS  PubMed  Google Scholar 

  • Austin JR, Frost E, Vidi PA, Kessler F, Staehelin LA (2006) Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes. Plant Cell 18:1693–1703

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ayad HS, El-Din KG, Reda F (2009) Efficiency of stigmasterol and α-tocopherol application on vegetative growth, essential oil pattern, protein and lipid peroxidation of geranium (Pelargonium graveolens L.). J Appl Sci Res 5:887–892

    CAS  Google Scholar 

  • Azzi A (2007) Molecular mechanism of α-tocopherol action. Free Radic Biol Med 43:16–21

    CAS  PubMed  Google Scholar 

  • Azzi A, Stocker A (2000) Vitamin E: non-antioxidant role. Prog Lipid Res 39:231–255

    CAS  PubMed  Google Scholar 

  • Badawy M, Magda M, Kandil M, Iman M (2015) Influence of diatomite, putrescine and alpha-tocopherol o some vegetative growth and flowering of Antirrhinum majus L. plants. J Hort Sci Ornamen Plants 7:7–18

    CAS  Google Scholar 

  • Bafeel SO, Ibrahim MM (2008) Antioxidants and accumulation of α-tocopherol induce chilling tolerance in Medicago sativa. Int J Agric Biol 10:593–598

    CAS  Google Scholar 

  • Bhattacharya S (2015) Reactive oxygen species and cellular defense system. In: Free radicals in human health and disease. Springer, New Delhi, pp 17–29

    Google Scholar 

  • Bobik K, Burch-Smith TM (2015) Chloroplast signaling within, between and beyond cells. Front Plant Sci 6:1–26

    Google Scholar 

  • Bose J, Rodrigo-Moreno A, Shabala S (2014) ROS homeostasis in halophytes in the context of salinity stress tolerance. J Exp Bot 65(5):1241–1257

    CAS  PubMed  Google Scholar 

  • Carletti P, Masi A, Wonisch A, Grill D, Tausz M, Ferretti M (2003) Changes in antioxidant and pigment pool dimensions in UV-B irradiated maize seedlings. Environ Exp Bot 50:149–157

    CAS  Google Scholar 

  • Carrera CS, Seguin P (2016) Factors affecting tocopherol concentrations in soybean seeds. J Agric Food Chem 64(50):9465–9474

    CAS  PubMed  Google Scholar 

  • Cela J, Falk J, Munné-Bosch S (2009a) Ethylene signaling may be involved in the regulation of tocopherol biosynthesis in Arabidopsis thaliana. FEBS Lett 583(6):992–996

    CAS  PubMed  Google Scholar 

  • Cela J, Arrom L, Munné-Bosch S (2009b) Diurnal changes in photosystem II photochemistry, photoprotective compounds and stress-related phytohormones in the CAM plant, Aptenia cordifolia. Plant Sci 177:404–410

    CAS  Google Scholar 

  • Chan Z, Yokawa K, Kim WY, Song CP (2016) Editorial: ROS regulation during plant abiotic stress responses. Front Plant Sci 7:1–3

    Google Scholar 

  • Chennupati P, Seguin P, Liu W (2011) Effects of high temperature stress at different development stages on soybean isoflavone and tocopherol concentrations. J Agric Food Chem 59(24):13081–13088

    CAS  PubMed  Google Scholar 

  • Clement SA, Tan CC, Guo JL, Kitta K, Suzuki YJ (2002) Roles of protein kinase and alpha-tocopherol in regulation of signal transduction for GATA-4 phosphorylation in HL-1 cardiac muscle cells. Free Radic Biol Med 32:341–349

    CAS  PubMed  Google Scholar 

  • Cline K, Andrews J, Mersey B, Newcomb EH, Keegstra K (1981) Separation and characterization of inner and outer envelope membranes of pea chloroplasts. Proc Natl Acad Sci 78:3595–3599

    Google Scholar 

  • Collin VC, Eymery F, Genty B, Rey P, Havaux M (2008) Vitamin E is essential for the tolerance of Arabidopsis thaliana to metal-induced oxidative stress. Plant Cell Environ 31:244–257

    CAS  PubMed  Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:1–13

    CAS  Google Scholar 

  • DeLong JM, Steffen KL (1998) Lipid peroxidation and α-tocopherol content in α-tocopherol supplemented thylakoid membranes during UV-B exposure. Environ Exp Bot 39:177–185

    CAS  Google Scholar 

  • Demmig-Adams B, Adams WW (2002) Antioxidants in photosynthesis and human nutrition. Science 298:2149–2153

    CAS  PubMed  Google Scholar 

  • Demmig-Adams B, Adams WW, Barker DH, Logan BA (2008) Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiol Plant 98:253–264

    Google Scholar 

  • Desel C, Hubbermann EM, Schwarz K, Krupinska K (2007) Nitration of γ-tocopherol in plant tissues. Planta 226:1311–1322

    CAS  PubMed  Google Scholar 

  • di Toppi LS, Vurro E, De Benedictis M, Falasca G, Zanella L, Musetti R, Lenucci MS, Dalessandro D, Altamura MM (2012) A bifasic response to cadmium stress in carrot: early acclimatory mechanisms give way to root collapse further to prolonged metal exposure. Plant Physiol Biochem 58:269–279

    Google Scholar 

  • Dong G, Liu X, Chen Z, Pan W, Li H, Liu G (2007) The dynamics of tocopherol and the effect of high temperature in developing sunflower (Helianthus annuus L.) embryo. Food Chem 102:138–145

    CAS  Google Scholar 

  • Eid RA, Taha LS, Ibrahim MMS (2010) Physiological properties studies on essential oil of Jasminum grandiflorum L. as affected by some vitamins. Ozean J Appl Sci 3(1):87–96

    Google Scholar 

  • El-Bassiouny H, Sadak MS (2015) Impact of foliar application of ascorbic acid and α-tocopherol on antioxidant activity and some biochemical aspects of flax cultivars under salinity stress. Acta Biol Colomb 20(2):209–222

    CAS  Google Scholar 

  • El-Bassiouny HM, Gobarah ME, Ramadan AA (2005) Effect of antioxidants on growth, yield and favism causative agents in seeds of Vicia faba L. plants grown under reclaimed sandy soil. J Agron 4:281–287

    Google Scholar 

  • El-Hakim WMA (2014) Response of some vegetable legume plants to foliar application of some antioxidants. J Am Sci 10:1–12

    Google Scholar 

  • El-Lethy SR, Ayad HS, Talaat IM (2010) Physiological effect of some antioxidants on flax plant (Linum usitatissimum L.). World J Agric Sci 6(5):622–629

    CAS  Google Scholar 

  • El-Quesni FEM, El-Aziz A, Nahed G, Kandil MM (2009) Some studies on the effect of ascorbic acid and α-tocopherol on the growth and some chemical composition of Hibiscus rosa-sineses L. at Nubaria. Ozean J Appl Sci 2:1943–2429

    Google Scholar 

  • El-Tohamy WA, El-Greadly NHM (2007) Physiological responses, growth, yield and quality of snap beans in response to foliar application of yeast, vitamin E and zinc under sandy soil conditions. Aust J Basic Appl Sci 1(3):294–299

    CAS  Google Scholar 

  • Eskling M, Arvidsson PO, Akerlund HE (1997) The xanthophyll cycle, its regulation and components. Plant Physiol 100:806–816

    CAS  Google Scholar 

  • Espinoza A, Martı´n AS, Lo´pez-Climent M, Ruiz-Lara S, Go´mez-Cadenas A, Casaretto JA (2013) Engineered drought-induced biosynthesis of α-tocopherol alleviates stress-induced leaf damage in tobacco. J Plant Physiol 170(14):1285–1294

    CAS  PubMed  Google Scholar 

  • Evans HM, Emerson OH, Emerson GA (1974) The isolation from wheat germ oil of an alcohol, α-tocopherol, having the properties of vitamin E. Nutr Rev 32(3):80–82

    Google Scholar 

  • Fageria NK, Filho MB, Moreira A, Guimaraes CM (2009) Foliar fertilization of crop plants. J Plant Nutr 32(6):1044–1064

    CAS  Google Scholar 

  • Fahad S, Hussain S, Saud S, Hassan S, Tanveer M, Ihsan MZ, Shah AN, Ullah A, Nasrullah, Khan F, Ullah S, Alharby H, Nasim W, Wu C, Huang J (2016) A combined application of biochar and phosphorus alleviates heat induced adversities on physiological, agronomical and quality attributes of rice. Plant Physiol Biochem 103:191–198

    CAS  PubMed  Google Scholar 

  • Falk J, Munné-Bosch S (2010) Tocochromanol functions in plants: antioxidation and beyond. J Exp Bot 61(6):1549–1566

    CAS  PubMed  Google Scholar 

  • Farouk S (2011) Ascorbic acid and α-tocopherol minimize salt-induced wheat leaf senescence. J Stress Physiol Biochem 7:58–79

    Google Scholar 

  • Fernández V, Sotiropoulos T, Brown PH (2013) Foliar fertilization: scientific principles and field practices. International Fertilizer Industry Association, Paris. pp 10–140

    Google Scholar 

  • Fryer MJ (1992) The antioxidant effects of thylakoid vitamin E (α-tocopherol). Plant Cell Environ 15:381–392

    CAS  Google Scholar 

  • Fu JY, Htar TT, De Silva L, Tan DMY, Chuah LH (2017) Chromatographic separation of vitamin E enantiomers. Molecules 22(2):1–17

    Google Scholar 

  • Gajewska E, Skłodowska M (2007) Relations between tocopherol, chlorophyll and lipid peroxides contents in shoots of Ni-treated wheat. J Plant Physiol 164:364–366

    CAS  PubMed  Google Scholar 

  • Galatro A, Simontacchi M, Puntarulo S (2001) Free radical generation and antioxidant content in chloroplasts from soybean leaves exposed to ultraviolet-B. Physiol Plant 113:564–570

    CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    CAS  PubMed  Google Scholar 

  • Golan T, Muller-Moule´ P, Niyogi KK (2006) Photoprotection mutants of Arabidopsis thaliana acclimate to high light by increasing photosynthesis and specific antioxidants. Plant Cell Environ 29:879–887

    CAS  PubMed  Google Scholar 

  • Grilo EC, Costa PN, Gurgel CSS, Beserra AFDL, Almeida FNDS, Dimenstein R (2014) Alpha-tocopherol and gamma-tocopherol concentration in vegetable oils. Food Sci Technol 34(2):379–385

    Google Scholar 

  • Gregory JF (2007) Vitamins. Fennemas Food Chemistry, 4th edn. USA, pp 439–523

  • Grusak MA, DellaPenna D (1999) Improving the nutrient composition of plants to enhance human nutrition and health. Annu. Rev Plant Biol 50:133–161

    CAS  Google Scholar 

  • Hasanuzzaman M, Fujita M (2013) Exogenous sodium nitroprusside alleviates arsenic-induced oxidative stress in wheat (Triticum aestivum L.) seedlings by enhancing antioxidant defense and glyoxalase system. Ecotoxicology 22:584–596

    CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Nahar K, Fujita M (2013) Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. In: Ecophysiology and responses of plants under salt stress. Springer, New York, pp 25–87

    Google Scholar 

  • Hassan NMK, Shafeek MR, Saleh SA, EL-Greadly HMN (2013) Growth, yield and nutritional values of onion (Allium cepa L.) plants as affected by bioregulators and vitamin E under newly reclaimed lands. Res J Appl Sci 9(1):795–803

    CAS  Google Scholar 

  • Hassanein RA, Bassuony FM, Baraka DM, Khalil RR (2009) Physiological effects of nicotinamide and ascorbic acid on Zea mays plant grown under salinity stress. I-changes in growth, some relevant metabolic activities and oxidative defense systems. Res J Agric Biol Sci 5(1):72–81

    CAS  Google Scholar 

  • Hatfield JL, Prueger JH (2015) Temperature extremes: effect on plant growth and development. Weather Clim Extremes 10:4–10

    Google Scholar 

  • Havaux M, Eymery F, Porfirova S, Rey P, Do¨rmann P (2005) Vitamin E protects against photoinhibition and photooxidative stress in Arabidopsis thaliana. Plant Cell 17:3451–3469

    CAS  PubMed  PubMed Central  Google Scholar 

  • Herrera JM, Rubio G, Häner LL, Delgado JA, Lucho-Constantino CA, Islas-Valdez S, Pellet D (2016) Emerging and established technologies to increase nitrogen use efficiency of cereals. Agronomy 6(2):1–19

    Google Scholar 

  • Herrmann KH, Weaver LM (1999) The Shikimate pathway. Annu Rev Plant Physiol Plant Mol Biol 50:473–503

    CAS  PubMed  Google Scholar 

  • Hincha DK (2008) Effects of α-tocopherol (vitamin E) on the stability and lipid dynamics of model membranes mimicking the lipid composition of plant chloroplast membranes. FEBS Lett 582:3687–3692

    CAS  PubMed  Google Scholar 

  • Hofius D, Hajirezaei M, Geiger M, Tschiersch H, Melzer M, Sonnewald U (2004) RNAi-mediated tocopherol deficiency impairs photoassimilate export in transgenic potato plants. Plant Physiol 135:1256–1268

    CAS  PubMed  PubMed Central  Google Scholar 

  • Howarth CJ (2005) Genetic improvements of tolerance to high temperature. In: Ashraf M, Harris PJ (eds) Abiotic stresses: plant resistance through breeding and molecular approaches. Howarth Press Inc., New York, pp 277–300

    Google Scholar 

  • Hussain N, Irshad F, Jabeen Z, Shamsi IH, Li Z, Jiang L (2013) Biosynthesis, structural, and functional attributes of tocopherols in plants; past, present, and future perspectives. J Agric Food Chem 61:6137–6149

    CAS  PubMed  Google Scholar 

  • Hussein MM, Balbaa LK, Gaballah MS (2007) Developing a salt tolerant cowpea using alpha tocopherol. J Appl Sci Res 3(10):1234–1239

    CAS  Google Scholar 

  • Jain K, Kataria S, Guruprasad KN (2003) Changes in antioxidant defenses of cucumber cotyledons in response to UV-B and to the free radical generating compound AAPH. Plant Sci 165:551–557

    CAS  Google Scholar 

  • Jajic I, Sarna T, Strzalka K (2015) Senescence, stress, and reactive oxygen species. Plants 4(3):393–411

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jie GU, Liu GS, Juan GUO, Zhang J (2008) Effects of Vitamin E on the activities of protective enzymes and membrane lipid peroxidation in Leymus chinensis under drought stress. Chem Res Chin Univ 24(1):80–83

    Google Scholar 

  • Kanayama Y, Sato K, Ikeda H, Tamura T, Nishiyama M, Kanahama K (2013) Seasonal changes in abiotic stress tolerance and concentrations of tocopherol, sugar, and ascorbic acid in sea buckthorn leaves and stems. Sci Hortic 164:232–237

    CAS  Google Scholar 

  • Kanwischer M, Porfirova S, Bergmüller E, Do¨rmann P (2005) Alterations in tocopherol cyclase activity in transgenic and mutant plants of Arabidopsis affect tocopherol content, tocopherol composition and oxidative stress. Plant Physiol 137:713–723

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kapoor D, Sharma R, Handa N, Kaur H, Rattan A, Yadav P, Gautam V, Kaur R, Bhardwaj R (2015) Redox homeostasis in plants under abiotic stress: role of electron carriers, metabolism mediators and proteinaceous thiols. Front Environ Sci 3:1–12

    Google Scholar 

  • Karuppanapandian T, Moon JC, Kim C, Manoharan K, Kim W (2011) Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms. Aust J Crop Sci 5(6):709–725

    CAS  Google Scholar 

  • Kasahara M, Kagawa T, Oikawa K, Suetsugu N, Miyao M, Wada M (2002) Chloroplast avoidance movement reduces photodamage in plants. Nature 420:829–832

    CAS  PubMed  Google Scholar 

  • Kaya C, Tuna AL, Dikilitas M, Cullu MA (2010) Responses of some enzymes and key growth parameters of salt-stressed maize plants to foliar and seed applications of kinetin and indole acetic acid. J Plant Nutr 33(3):405–422

    CAS  Google Scholar 

  • Keller Y, Bouvier F, d’Harlingue A, Camara B (1998) Metabolic compartmentation of plastid prenyl lipid biosynthesis. Europ J Biochem 251:413–417

    CAS  PubMed  Google Scholar 

  • Kolota E, Osinska M (2001) Efficiency of foliar nutrition of field vegetables grown at different nitrogen rates. In: international Conference on environmental problems associated with nitrogen fertilization of field grown vegetable crops, pp 87–91

  • Kostopoulou Z, Therios I, Molassiotis A (2014) Resveratrol and its combination with α-tocopherol mediate salt adaptation in citrus seedlings. Plant Physiol Biochem 78:1–9

    CAS  PubMed  Google Scholar 

  • Kruk J, Strzalka K (2001) Redox changes of cytochrome b559 in the presence of plastoquinones. J Biol Chem 276:86–91

    CAS  PubMed  Google Scholar 

  • Kumar S, Singh R, Nayyar H (2013) α-Tocopherol application modulates the response of wheat (Triticum aestivum L.) seedlings to elevated temperatures by mitigation of stress injury and enhancement of antioxidants. J Plant Growth Regul 32:307–314

    CAS  Google Scholar 

  • Lalarukh I, Shahbaz M (2018) Alpha-tocopherol induced modulations in morpho-physiological attributes of sunflower (Helianthus annuus) grown under saline environment. Int J Agric Biol 20(3):661–668

    CAS  Google Scholar 

  • Latha MR, Nadanassababady T (2003) Foliar nutrition in crops. Res Rev 24(3):229–234

    Google Scholar 

  • Lee JY, Wang X, Cui W, Sager R, Modla S, Czymmek K, Zybaliov B, van Wijk K, Zhang C, Lu H, Lakshmanan V (2011) A plasmodesmata-localized protein mediates crosstalk between cell-to-cell communication and innate immunity in Arabidopsis. Plant Cell 23:3353–3373

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Wang Z, Sun X, Tang K (2008) Current opinions on the functions of tocopherol based on the genetic manipulation of tocopherol biosynthesis in plants. J Integr Plant Biol 50(9):1057–1069

    CAS  PubMed  Google Scholar 

  • Lichtenthaler HK (2007) Biosynthesis, accumulation and emission of carotenoids, α-tocopherol, plastoquinone, and isoprene in leaves under high photosynthetic irradiance. Photosynth Res 92:163–179

    CAS  PubMed  Google Scholar 

  • Liu X, Hua X, Guo J, Qi D, Wang L, Liu Z, Jin Z, Chen S, Liu G (2008) Enhanced tolerance to drought stress in transgenic tobacco plants overexpressing VTE1 for increased tocopherol production from Arabidopsis thaliana. Biotechnol Lett 30:1275–1280

    CAS  PubMed  Google Scholar 

  • Lushchak VI (2011) Environmentally induced oxidative stress inaquatic animals. Aquat Toxicol 101:13–30

    CAS  PubMed  Google Scholar 

  • Lushchak VI, Semchuk NM (2012) Tocopherol biosynthesis: chemistry, regulation and effects of environmental factors. Acta Physiol Plant 34:1607–1628

    CAS  Google Scholar 

  • Maeda H, DellaPenna D (2007) Tocopherol functions in photosynthetic organisms. Curr Opin Plant Biol 10(3):260–265

    CAS  PubMed  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    CAS  PubMed  Google Scholar 

  • Mahdi AH, Taha RS, El-Wahed MHA (2017) Improving performance of glycine max (L.) by α-tocopherol under deficit irrigation in dry environments. Int J Curr Microbiol Appl Sci 6(1):1–14

    Google Scholar 

  • Marzauk N, Safeek M, Helmy Y, Ahmed A, Shalaby M (2014) Effect of vitamin E and yeast extract foliar application on growth, pod yield and both green pod and seed yield of broad bean (Vicia faba L.). Middle East J Appl Sci 4(1):61–67

    Google Scholar 

  • Matringe M, Ksas B, Rey P, Havaux M (2008) Tocotrienols, the unsaturated forms of vitamin E, can function as antioxidants and lipid protectors in tobacco leaves. Plant Physiol 147:764–778

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mekki BED, Hussien HA, Salem H (2015) Role of glutathione, ascorbic acid and α-tocopherol in alleviation of drought stress in cotton plants. Int J Chem Technol Res 8(4):1573–1581

    Google Scholar 

  • Mohamed AA, Aly AA (2008) Alterations of some secondary metabolites and enzymes activity by using exogenous antioxidant compound in onion plants grown under seawater salt stress. Am-Eur J Sci Res 3(2):139–146

    Google Scholar 

  • Mokrosnop VM (2014) Functions of tocopherols in the cells of plants and other photosynthetic organisms. Ukr Biochem J 86:26–36

    CAS  PubMed  Google Scholar 

  • Mostafa MR, Mervat SS, Safaa REL, Ebtihal MAE, Magdi TA (2015) Exogenous α-tocopherol has a beneficial effect on Glycine max (L.) plants irrigated with diluted sea water. J Hortic Sci Biotechnol 90(2):195–202

    Google Scholar 

  • Mpoloka SW (2008) Effects of prolonged UV-B exposure in plants. Afr J Biotechnol 7:4874–4883

    CAS  Google Scholar 

  • Munné-Bosch S (2005) The role of α-tocopherol in plant stress tolerance. J Plant Physiol 162:743–748

    PubMed  Google Scholar 

  • Munné-Bosch S (2007) α-Tocopherol: a multifaceted molecule in plants. Vitam Horm 76:375–392

    PubMed  Google Scholar 

  • Munné-Bosch S, Alegre L (2002) The function of tocopherols and tocotrienols in plants. Crit Rev Plant Sci 21:31–57

    Google Scholar 

  • Munné-Bosch S, Alegre L (2003) Drought-induced changes in the redox state of α-tocopherol, ascorbate, and the diterpene carnosic acid in chloroplasts of labiatae plants differing in carnosic acid contents. Plant Physiol 131:1816–1825

    PubMed  PubMed Central  Google Scholar 

  • Munné-Bosch S, Cela J (2006) Effects of water deficit on photosystem II photochemistry and photoprotection during acclimation of lyre leaf sage (Salvia lyrata L.) plants to high light. J Photochem Photobiol B 85:191–197

    PubMed  Google Scholar 

  • Munné-Bosch S, Schwarz K, Alegre L (1999) Enhanced formation of α-tocopherol and highly oxidized abietane diterpenes in water stressed rosemary plants. Plant Physiol 121:1047–1052

    PubMed  PubMed Central  Google Scholar 

  • Munné-Bosch S, Pecuelas J, Asensio D, Llusia J (2004) Air borne ethylene may alter antioxidant protection and reduce tolerance of holm oak to heat and drought stress. Plant Physiol 136:2937–2947

    PubMed  PubMed Central  Google Scholar 

  • Munné-Bosch S, Falara V, Pateraki I, Lopez-Carbonell M, Cela J, Kanellis AK (2009) Physiological and molecular responses of the isoprenoid biosynthetic pathway in a drought-resistant Mediterranean shrub, Cistus creticus exposed to water deficit. J Plant Physiol 166:136–145

    PubMed  Google Scholar 

  • Noga G, Schmitz M (1997) Tocopherol and its potential for improving fruit quality in apple. In: International Symposium on growth and development of fruit crops, 527, pp 111–118

  • Odo AO (2016) Abiotic stress, antioxidants and crop productivity: The mitigating role of exogenous substances. Greener J Agric Sci 6(2):79–86

    Google Scholar 

  • Orabi SA, Abdelhamid MT (2016) Protective role of α-tocopherol on two Vicia faba cultivars against seawater-induced lipid peroxidation by enhancing capacity of anti-oxidative system. J Saudi Soc Agric Sci 15(2):145–154

    Google Scholar 

  • Ouchi A, Nagaoka SI, Suzuki T, Izumisawa K, Koike T, Mukai K (2014) Finding of synergistic and cancel effects on the aroxyl radical-scavenging rate and suppression of prooxidant effect for coexistence of α-tocopherol with β-, γ-, and δ-tocopherols (or-tocotrienols). J Agric Food Chem 62:8101–8113

    CAS  PubMed  Google Scholar 

  • Oukarroum A, Strasser RJ, Schansker G (2012) Heat stress and photosynthetic electron transport chain of the lichen Parmelina tiliacea (Hoffm.) Ach. in the dry and the wet state: differences and similarities with the heat stress response of higher plants. Photosynth Res 111:303–314

    CAS  PubMed  Google Scholar 

  • Pintó-Marijuan M, Munné-Bosch S (2014) Photo-oxidative stress markers as a measure of abiotic stress-induced leaf senescence: advantages and limitations. J Exp Bot 65(14):3845–3857

    PubMed  Google Scholar 

  • Rady MM, Sadak MSH, El-Bassiouny HMS, Abdel-Monem AA (2011) Alleviation the adverse effects of salinity stress in sunflower cultivars using nicotinamide and α-tocopherol. Aust. J Basic Appl Sci 5(10):342–355

    CAS  Google Scholar 

  • Rahmawati N, Damanik RIM (2018) Effect of foliar application of α-tocopherol on vegetative growth and some biochemical constituents of two soybean genotypes under salt stress. In: IOP conference series: earth and environmental science, vol 122, no 1. IOP Publishing, p. 012049

  • Rautenkranz AAF, Li L, Machler F, Matinoia E, Oertli JJ (1994) Transport of ascorbic acid and dehydroascorbic acids across protoplast and vacuole membranes isolated from barley (Hordeum vulgare L. cv. Gerbel) leaves. Plant Physiol 106:187–193

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reboul E, Richelle M, Perot E, Desmoulins-Malezet C, Pirisi V, Borel P (2006) Bioaccessibility of carotenoids and vitamin E from their main dietary sources. J Agric Food Chem 54:8749–8755

    CAS  PubMed  Google Scholar 

  • Rice EL (1984) Allelopathy. Academic Press, Cambridge

    Google Scholar 

  • Rippert P, Scimemi C, Dubald M, Matringe M (2004) Engineering plant Shikimate pathway for production of tocotrienol and improving herbicide resistance. Plant Physiol 134:92–100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruciska-Sobkowiak R, Pukacki PM (2006) Antioxidative defense system in lupin roots exposed to increasing concentrations of lead. Acta Physiol Plant 28:357–364

    Google Scholar 

  • Sadak MS, Dawood MG (2014) Role of ascorbic acid and α-tocopherol in alleviating salinity stress on flax plant (Linum usitatissimum L.). J Stress Physiol Biochem 10(1):93–111

    Google Scholar 

  • Sadak MH, Rady MM, Badr NM, Gaballah MS (2010) Increasing sunflower salt tolerance using nicotinamide and α-tocopherol. Int J Acad Res 2:263–270

    Google Scholar 

  • Sadiq M, Akram NA, Javed MT (2016) Alpha-tocopherol alters endogenous oxidative defense system in mungbean plants under water-deficit conditions. Pak J Bot 48(6):2177–2182

    CAS  Google Scholar 

  • Sadiq M, Akram NA, Ashraf M (2017) Foliar applications of alpha-tocopherol improve the composition of fresh pods of Vigna radiata subjected to water deficiency. Turk J Bot 41:1–9

    Google Scholar 

  • Sadiq M, Akram NA, Ashraf M (2018) Impact of exogenously applied tocopherol on some key physio-biochemical and yield attributes in mungbean [Vigna radiata (L.) Wilczek] under limited irrigation regimes. Acta Physiol Plant 40:1–14

    CAS  Google Scholar 

  • Sakr MT, El-Metwally MA (2009) Alleviation of the harmful effects of soil salt stress on growth, yield and endogenous antioxidant content of wheat plant by application of antioxidants. Pak J Biol Sci 12:624–630

    CAS  PubMed  Google Scholar 

  • Saleem MS, Sajid M, Ahmed Z, Ahmed S, Ahmed N, Islam SU (2014) Effect of seed soaking on seed germination and growth of bitter gourd cultivars. Int J Agric Vet Sci 6(6):7–11

    Google Scholar 

  • Sandorf I, Hollander-Czytko H (2002) Jasmonate is involved in the induction of tyrosine aminotransferase and tocopherol biosynthesis in Arabidopsis thaliana. Planta 216:173–179

    CAS  PubMed  Google Scholar 

  • Sattler SE, Gilliland LU, Magallanes-Lundback M, Pollard M, DellaPenna D (2004) Vitamin E is essential for seed longevity and for preventing lipid peroxidation during germination. Plant Cell 16:1419–1432

    CAS  PubMed  PubMed Central  Google Scholar 

  • Semida WM, Taha RS, Abdelhamid MT, Rady MM (2014) Foliar-applied α-tocopherol enhances salt-tolerance in Vicia faba L. plants grown under saline conditions. S Afr J Bot 95:24–31

    CAS  Google Scholar 

  • Semida WM, Abd El-Mageed TA, Howladar SM, Rady MM (2016) Foliar-applied alpha-tocopherol enhances salt-tolerance in onion plants by improving antioxidant defence system. Aust. J Crop Sci 10(7):1030–1039

    CAS  Google Scholar 

  • Sen CK, Khanna S, Rink C, Roy S (2007) Tocotrienols: the emerging face of natural vitamin E. Vitam Horm 76:203–261

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sereflioglu S, Dinler BS, Tasci E (2017) Alpha-tocopherol-dependent salt tolerance is more related with auxin synthesis rather than enhancement antioxidant defense in soybean roots. Acta Biol Hung 68(1):115–125

    CAS  PubMed  Google Scholar 

  • Shafeek MR, Helmy YI, Ahmed AA, Shalaby MAF (2014) Productivity of snap bean plants by spraying of some antioxidants materials under sandy soil conditions in plastic house. Middle East J Agric Res 3(1):100–105

    Google Scholar 

  • Shahi S, Srivastava M (2016) Foliar application of manganese for increasing salinity tolerance in mungbean. Int J Appl Biol Pharm 7(1):148–153

    CAS  Google Scholar 

  • Shahidi F, de Camargo AC (2016) Tocopherols and tocotrienols in common and emerging dietary sources: occurrence, applications, and health benefits. Int J Mol Sci 17(10):1–29

    Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:1–26

    Google Scholar 

  • Skłodowska M, Gapin M, Gajewska E, Gabara B (2009) Tocopherol content and enzymatic antioxidant activities in chloroplasts from NaCl-stressed tomato plants. Acta Physiol Plant 31:393–400

    Google Scholar 

  • Soltani Y, Saffari VR, Moud AAM, Mehrabani M (2012) Effect of foliar application of α-tocopherol and pyridoxine on vegetative growth, flowering, and some biochemical constituents of Calendula officinalis L. plants. Afr J Biotechnol 11(56):11931–11935

    CAS  Google Scholar 

  • Spicher L, Glauser G, Kessler F (2016) Lipid antioxidant and galactolipid remodeling under temperature stress in tomato plants. Front Plant Sci 7:1–12

    Google Scholar 

  • Sterkel M, Oliveira PL (2017) Developmental roles of tyrosine metabolism enzymes in the blood-sucking insect Rhodnius prolixus. Proc Biol Sci 284:1–7

    Google Scholar 

  • Stern MH, Robeson CD, Weisler L, Baxter JG (1947) α-tocopherol: isolation from soybean oil and properties. J Am Chem Soc 69:869–874

    CAS  PubMed  Google Scholar 

  • Steyn WJ, Wand SJE, Holcroft DM, Jacobs G (2002) Anthocyanins in vegetative tissues: a proposed unified function in photoprotection. New Phytol 155:349–361

    CAS  PubMed  Google Scholar 

  • Streb P, Shang W, Feierabend J (1999) Resistance of cold-hardened winter rye leaves (Secale cereale L.) to photo-oxidative stress. Plant Cell Environ 22:1211–1223

    CAS  Google Scholar 

  • Suárez-Jiménez GM, López-Saiz CM, Ramírez-Guerra HE, Ezquerra-Brauer JM, Ruiz-Cruz S, Torres-Arreola W (2016) Role of endogenous and exogenous tocopherols in the lipid stability of marine oil systems: a review. Int J Mol Sci 17(12):1–15

    Google Scholar 

  • Sun AZ, Guo FQ (2016) Chloroplast retrograde regulation of heat stress responses in plants. Front Plant Sci 7:1–16

    PubMed  PubMed Central  Google Scholar 

  • Suo J, Zhao Q, David L, Chen S, Dai S (2017) Salinity response in chloroplasts: Insights from gene characterization. Int J Mol Sci 18(5):1–17

    Google Scholar 

  • Szarka A, Tomasskovics B, Bánhegyi G (2012) The ascorbate-glutathione-α-tocopherol triad in abiotic stress response. Int J Mol Sci 13(4):4458–4483

    CAS  PubMed  PubMed Central  Google Scholar 

  • Szyman´ska R, Kruk J (2010) Plastoquinol is the main prenyl lipid synthesized during acclimation to high light conditions in Arabidopsis and is converted to plasto chromanol by tocopherol cyclase. Plant Cell Physiol 51:537–545

    Google Scholar 

  • Tang YL, Ren WW, Zhang L, Tang KX (2011) Molecular cloning and characterization of a tocopherol cyclase gene from Lactuca sativa (Asteraceae). Genet Mol Res 10:693–702

    CAS  PubMed  Google Scholar 

  • Terashima I, Miyazawa SI, Hanba YT (2001) Why are sun leaves thicker than shade leaves? Consideration based on analyses of CO2 diffusion in the leaf. J Plant Res 114(1):93–105

    CAS  Google Scholar 

  • Traber MG, Atkinson J (2007) Vitamin E, antioxidant and nothing more. Free Radic Biol Med 43:4–15

    CAS  PubMed  PubMed Central  Google Scholar 

  • Valentin HE, Lincoln K, Moshiri F, Jensen PK, Qi Q, Venkatesh TV, Karunanandaa B, Baszis SR, Norris SR, Savidge B, Gruys KJ (2006) The Arabidopsis vitamin E pathway gene5-1 mutant reveals a critical role for phytol kinase in seed tocopherol biosynthesis. Plant Cell 18:212–224

    CAS  PubMed  PubMed Central  Google Scholar 

  • Velisek J, Cejpek K (2006) Biosynthesis of food constituents: Amino acids: 2. The alanine-valine-leucine, serine-cysteine-glycine, and aromatic and heterocyclic amino acids groups. Czech J Food Sci 24(2):45–58

    CAS  Google Scholar 

  • Wang X, Quinn PJ (2000) The location and function of vitamin E in membranes. Mol Membrane Biol 17:143–156

    Google Scholar 

  • Yamamoto Y, Hori H, Kai S, Ishikawa T, Ohnishi A, Tsumura N, Morita N (2013) Quality control of photosystem II: reversible and irreversible protein aggregation decides the fate of photosystem II under excessive illumination. Front Plant Sci 4:1–9

    Google Scholar 

  • Yang W, Cahoon RE, Hunter SC, Zhang C, Han J, Borgschulte T, Cahoon EB (2011) Vitamin E biosynthesis: functional characterization of the monocot homogentisate geranylgeranyl transferase. Plant J 65:206–217

    CAS  PubMed  Google Scholar 

  • Ye YR, Wang WL, Zheng CS, Fu DJ, Liu HW, Shen X (2017) Foliar-application of α-tocopherol enhanced salt tolerance of Carex leucochlora. Biol Plant 61(3):565–570

    CAS  Google Scholar 

  • Yusuf MA, Kumar D, Rajwanshi R, Strasser RJ, Tsimilli-Michael M, Sarin NB (2010) Overexpression of γ-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: physiological and chlorophyll a fluorescence measurement. BBA-Bioenergetics 1797(8):1428–1438

    CAS  PubMed  Google Scholar 

  • Zhou R, Yu X, Ottosen CO, Rosenqvist E, Zhao L, Wang Y, Zhao T, Wu Z (2017) Drought stress had a predominant effect over heat stress on three tomato cultivars subjected to combined stress. BMC Plant Biol 17(1):1–13

    CAS  Google Scholar 

Download references

Acknowledgements

Authors highly acknowledge the inputs by Prof. Dr. Phil Harris for improving the grammar and language of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nudrat Aisha Akram or Parvaiz Ahmad.

Ethics declarations

Conflict of interest

The authors declare that no conflict of interest exists among the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadiq, M., Akram, N.A., Ashraf, M. et al. Alpha-Tocopherol-Induced Regulation of Growth and Metabolism in Plants Under Non-stress and Stress Conditions. J Plant Growth Regul 38, 1325–1340 (2019). https://doi.org/10.1007/s00344-019-09936-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-019-09936-7

Keywords

Navigation