Skip to main content
Log in

Defense Responses of Cherry Rootstock ‘Gisela 6’ Elicited by Agrobacterium tumefaciens Infection

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Agrobacterium tumefaciens causes crown gall disease in plants by transferring a portion of the tumor-inducing plasmid, transfer DNA, into the plant genome. To examine the physiological changes induced by A. tumefaciens in cherry rootstock ‘Gisela 6’, we determined the activity of defense-related enzymes, including superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), polyphenol oxidase (PPO), phenylalanine ammonialyase (PAL), lipoxygenase (LOX), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), and glutathione reductase (GR), and the content of phytohormones, salicylic acid (SA) and jasmonic acid (JA), in cherry plants before and after infection. Furthermore, we assayed the expression of genes encoding these enzymes and SA and JA biosynthesis genes using quantitative real-time PCR, and examined the morphology of the infected tissue surface. Infection with A. tumefaciens increased the activity of POD, SOD, PPO, APX, MDHAR, and GR, and upregulated the expression of the corresponding genes. It also elevated the JA content of cherry plants. No significant difference was noted in CAT and PAL activity between the infected and control groups. In the treatment group, a slight increase in LOX activity was observed at 15 days post-infection (dpi), whereas DHAR activity declined by almost 50% at 10 dpi. The total SA content showed a general upward trend in infected plants but did not show a clear difference compared with the control. Overall, our data suggest that Agrobacterium infection did not elicit a hypersensitive response in ‘Gisela 6’ but altered the expression level of genes involved in defense responses and phytohormone biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Method Enzymol 105:121–126

    Article  CAS  Google Scholar 

  • Ağlar E, Yıldız K (2014) Influence of rootstocks (Gisela 5, Gisela 6, MaxMa, SL 64) on performance of ‘0900 Ziraat’ sweet cherry. J Basic Appl Sci 10:60–66

    Article  Google Scholar 

  • Alburquerque N, Faize L, Burgos L (2017) Silencing of Agrobacterium tumefaciens oncogenes ipt and iaaM induces resistance to crown gall disease in plum but not in apricot. Pest Manag Sci 73:2063–2173

    Article  Google Scholar 

  • Ali H, Ahmed K, Hussain A, Imran (2010) Incidence and severity of crown gall disease of cherry, apple and apricot plants caused by Agrobacterium tumefaciens in Nagar Valley of Gilgit-Baltistan, Pakistan. Pak J Nutr 9:577–581

    Article  Google Scholar 

  • Anand A, Uppalapati SR, Ryu CM, Allen SN, Kang L, Tang Y, Mysore KS (2008) Salicylic acid and systemic acquired resistance play a role in attenuating crown gall disease caused by Agrobacterium tumefaciens. Plant Physiol 146:703–715

    Article  CAS  Google Scholar 

  • Arrigoni O, Dipierro S, Borraccino G (1981) Ascorbate free radical reductase, a key enzyme of the ascorbic acid system. Febs Lett 125:242–244

    Article  CAS  Google Scholar 

  • Axelrod B (1981) Lipoxygenase from soybean. Method Enzymol 71:441–451

    Article  CAS  Google Scholar 

  • Bian S, Jiang Y (2009) Reactive oxygen species, antioxidant enzyme activities and gene expression patterns in leaves and roots of Kentucky bluegrass in response to drought stress and recovery. Sci Hortic 120:264–270

    Article  CAS  Google Scholar 

  • Bliss FA (1999) Crown gall resistance in accessions of 20 Prunus species. Hortscience 34:326–330

    Article  Google Scholar 

  • Brooks DM, Bender CL, Kunkel BN (2005) The Pseudomonas syringae phytotoxin coronatine promotes virulence by overcoming salicylic acid-dependent defences in Arabidopsis thaliana. Mol Plant Pathol 6:629–639

    Article  CAS  Google Scholar 

  • Chilton MD, Saiki RK, Yadav N, Gordon MP, Quetier F (1980) T-DNA from Agrobacterium Ti plasmid is in the nuclear DNA fraction of crown gall tumor cells. Proc Natl Acad Sci USA 77:4060–4064

    Article  CAS  Google Scholar 

  • Dai L, Gong C, Shi L, Chen F, Gong P (2007) Polyphenol oxidase in plants. Chin Agric Sci Bull 23:312–316

    Google Scholar 

  • De Ascensao ARDCF, Dubery IA (2000) Panama disease: cell wall reinforcement in banana roots in response to elicitors from Fusarium oxysporum f. sp. cubense race four. Phytopathology 90:1173–1180

    Article  Google Scholar 

  • Diaz-Vivancos P, Faize M, Barba-Espín G, Faize L, Petri C, Hernández JA, Burgos L (2013) Ectopic expression of cytosolic superoxide dismutase and ascorbate peroxidase leads to salt stress tolerance in transgenic plums. Plant Biotechnol J 11:976–985

    Article  CAS  Google Scholar 

  • Diaz-Vivancos P, Faize L, Nicolás E, Clemente-Moreno MJ, Bru-Martinez R, Burgos L, Hernández JA (2016) Transformation of plum plants with a cytosolic ascorbate peroxidase transgene leads to enhanced water stress tolerance. Ann Bot 117:1121–1131

    Article  CAS  Google Scholar 

  • Ditt RF, Nester EW, Comai L (2001) Plant gene expression response to Agrobacterium tumefaciens. Proc Natl Acad Sci USA 98:10954–10959

    Article  CAS  Google Scholar 

  • Ditt RF, Kerr KF, Figueiredo PD, Delrow J, Comai L, Nester EW (2006) The Arabidopsis thaliana transcriptome in response to Agrobacterium tumefaciens. Mol Plant Microbe Interact 19:665–681

    Article  CAS  Google Scholar 

  • Ferrigo D, Causin R, Raiola A (2017) Effect of potential biocontrol agents selected among grapevine endophytes and commercial products on crown gall disease. Biocontrol 62:821–833

    Article  Google Scholar 

  • Feussner I, Wasternack C (2002) The lipoxygenase pathway. Annu Rev Plant Biol 53:275–297

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  Google Scholar 

  • Glazebrook J (1999) Genes controlling expression of defense responses in Arabidopsis. Curr Opin Plant Biol 2:280–286

    Article  CAS  Google Scholar 

  • Gohlke J, Deeken R (2014) Plant responses to Agrobacterium tumefaciens and crown gall development. Front Plant Sci 5:155

    Article  Google Scholar 

  • Hammond-Kosack KE, Jones JDG (1996) Resistance gene-dependent plant defense responses. Plant Cell 8:1773–1791

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuczmog A, Galambos A, Horváth S, Mátai A, Kozma P, Szegedi E, Putnoky P (2012) Mapping of crown gall resistance locus Rcg1 in grapevine. Theor Appl Genet 125:1565–1574

    Article  CAS  Google Scholar 

  • Lamb CJ, Rubery PH (1976) Phenylalanine ammonia-lyase and cinnamic acid 4-hydroxylase: product repression of the level of enzyme activity in potato tuber discs. Planta 130:283–290

    Article  CAS  Google Scholar 

  • Laurie-Berry N, Joardar V, Street IH, Kunkel BN (2006) The Arabidopsis thaliana JASMONATE INSENSITIVE 1 gene is required for suppression of salicylic acid-dependent defenses during infection by Pseudomonas syringae. Mol Plant Microbe Interact 19:789–800

    Article  CAS  Google Scholar 

  • Lee CW, Efetova M, Engelmann JC, Kramell R, Wasternack C, Ludwig-Müller J, Hedrich R, Deeken R (2009) Agrobacterium tumefaciens promotes tumor induction by modulating pathogen defense in Arabidopsis thaliana. Plant Cell 21:2948–2962

    Article  CAS  Google Scholar 

  • Li Q, Guo RJ, Li SD, Li SF, Wang HQ (2015) Determination of tumorigenic Agrobacterium, density in soil by real-time PCR assay and its effect on crown gall disease severity. Eur J Plant Pathol 142:25–36

    Article  CAS  Google Scholar 

  • Liu B, Li M, Cheng L, Liang D, Zou Y, Ma F (2012) Influence of rootstock on antioxidant system in leaves and roots of young apple trees in response to drought stress. Plant Growth Regul 67:247–256

    Article  CAS  Google Scholar 

  • Liu J, Wang W, Wang L, Sun Y (2015) Exogenous melatonin improves seedling health index and drought tolerance in tomato. Plant Growth Regul 77:317–326

    Article  CAS  Google Scholar 

  • Liu HJ, Li YP, Liu W, Shao Q, Qi HY (2016) Effects of Fusarium oxysporum f. sp. melonis on lignin, activities of lignin-related enzymes and genes expressions of CmCADs in oriental melon (Cucumis melo var. makuwa Makino). Scientia Agricultura Sinica 49:2153–2163

    CAS  Google Scholar 

  • López MA, Bannenberg G, Castresana C (2008) Controlling hormone signaling is a plant and pathogen challenge for growth and survival. Curr Opin Plant Biol 11:420–427

    Article  Google Scholar 

  • McCullen CA, Binns AN (2006) Agrobacterium tumefaciens and plant cell interactions and activities required for interkingdom macromolecular transfer. Annu Rev Cell Dev Biol 22:101–127

    Article  CAS  Google Scholar 

  • Møller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481

    Article  Google Scholar 

  • Montillet JL, Agnel JP, Ponchet M, Vailleau F, Roby D, Triantaphylidès C (2002) Lipoxygenase-mediated production of fatty acid hydroperoxides is a specific signature of the hypersensitive reaction in plants. Plant Physiol Biochem 40:633–639

    Article  CAS  Google Scholar 

  • Morris RO (1986) Genes specifying auxin and cytokinin biosynthesis in phytopathogens. Annu Rev Plant Physiol 37:509–538

    Article  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Niemeyer J, Ruhe J, Machens F, Stahl DJ, Hehl R (2014) Inducible expression of p50 from TMV for increased resistance to bacterial crown gall disease in tobacco. Plant Mol Biol 84:111–123

    Article  CAS  Google Scholar 

  • Nimchuk Z, Eulgem T, Holt III BF, Dangl JL (2003) Recognition and response in the plant immune system. Annu Rev Genet 37:579–609

    Article  CAS  Google Scholar 

  • Pieterse CMJ, Leon-Reyes A, Van der Ent S, Van Wees SCM (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5:308–316

    Article  CAS  Google Scholar 

  • Prochazkova D, Sairam RK, Srivastava GC, Singh DV (2001) Oxidative stress and antioxidant activity as the basis of senescence in maize leaves. Plant Sci 161:765–771

    Article  CAS  Google Scholar 

  • Pu JJ, Liu XM, Zeng HC, Lin QP (2003) Induced resistance by the cell-wall released elicitors from Fusarium oxysporum f. sp. niveum and F. oxysporum f. sp. cubense against Fusarium wilt of watermelon. Chin J Trop Crop 24:47–50

    Google Scholar 

  • Pulawska J (2010) Crown gall of stone fruits and nuts, economic significance and diversity of its causal agents: tumorigenic Agrobacterium spp. J Plant Pathol 92:87–98

    Google Scholar 

  • Rao MV, Paliyath C, Ormrod DP (1996) Ultraviolet-B- and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiol 110:125–136

    Article  CAS  Google Scholar 

  • Smith EF, Townsend CO (1907) A plant-tumor of bacterial origin. Science 25:671–673

    Article  CAS  Google Scholar 

  • Staskawicz BJ, Ausubel FM, Baker BJ, Ellis JG, Jones JDG (1995) Molecular genetics of plant disease resistance. Science 268:661–667

    Article  CAS  Google Scholar 

  • Thomma BP, Penninckx IA, Broekaert WF, Cammue BP (2001) The complexity of disease signaling in Arabidopsis. Curr Opin Immunol 13:63–68

    Article  CAS  Google Scholar 

  • Wang P, Yin L, Liang D, Li C, Ma F, Yue Z (2012) Delayed senescence of apple leaves by exogenous melatonin treatment: toward regulating the ascorbate–glutathione cycle. J Pineal Res 53:11–20

    Article  Google Scholar 

  • Winterbourn CC, Hawkins RE, Brian M, Carrell RW (1975) The estimation of red cell superoxide dismutase activity. J Lab Clin Med 85:337–341

    CAS  PubMed  Google Scholar 

  • Yuan ZC, Edlind MP, Liu P, Saenkham P, Banta LM, Wise AA, Ronzone E, Binns AN, Kerr K, Nester EW (2007) The plant signal salicylic acid shuts down expression of the vir regulon and activates quormone-quenching genes in Agrobacterium. Proc Natl Acad Sci USA 104:11790–11795

    Article  CAS  Google Scholar 

  • Zhang Y, Yang X, Liu Q, Qiu D, Zhang Y, Zeng H, Yuan J, Mao J (2010) Purification of novel protein elicitor from Botrytis cinerea that induces disease resistance and drought tolerance in plants. Microbiol Res 165:142–151

    Article  CAS  Google Scholar 

  • Zoina A, Raio A (1999) Susceptibility of some peach rootstocks to crown gall. J Plant Pathol 81:181–187

    Google Scholar 

Download references

Acknowledgements

This study was funded by the international science and technology cooperation project between China and Hungary (No. 2016YFE0130900), the agricultural science and technology innovation and transformation project of Shaanxi province (No. NYKJ-2018-YL10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuliang Cai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 111 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, C., Liu, T., Zhao, Y. et al. Defense Responses of Cherry Rootstock ‘Gisela 6’ Elicited by Agrobacterium tumefaciens Infection. J Plant Growth Regul 38, 1082–1093 (2019). https://doi.org/10.1007/s00344-019-09915-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-019-09915-y

Keywords

Navigation