Skip to main content
Log in

The Roles of Auxin in Regulating “Shoot Branching” of Cremastra appendiculata

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Cremastra appendiculata (D. Don) Makino is a mainly vegetative propagation terrestrial orchid that is a typical representative of the warm-temperate vegetation in China. In this experiment, we investigated the growth and development process of C. appendiculata leaf buds and examined their biochemical components (proteins, auxin, and cytokinin) to gain insight into the “shoot branching” of C. appendiculata pseudobulb string. The results showed that the metabolic activity of C. appendiculata pseudobulbs became lower with the increase of pseudobulb age. However, biennial and triennial pseudobulbs have higher auxin levels than annual pseudobulbs in the intact plant (P < 0.05). After decapitation, the auxin rapidly reduces in biennials. The reduction of auxin level promotes cytokinin biosynthesis, which makes the biennial dormant buds start to germinate 18 days after decapitation. These data and phenomena suggested that auxin plays important roles in regulating shoot branching of C. appendiculata, although further studies are needed to consolidate this viewpoint. Our data indirectly support the classical apical dominance theory whereby biennial pseudobulbs are strongly dependent on reduced auxin to initiate leaf bud outgrowth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Balla J, Kalousek P, Reinohl V, Friml J, Prochazka S (2011) Competitive canalization of PIN-dependent auxin flow from axillary buds controls pea bud outgrowth. Plant J 65:571–577

    Article  CAS  PubMed  Google Scholar 

  • Bennett T, Leyser O (2006) Something on the side: axillary meristems and plant development. Plant Mol Biol 60(6):843–854

    Article  CAS  PubMed  Google Scholar 

  • Beveridge CA (2006) Advances in the control of axillary bud outgrowth: sending a message. Curr Opin Plant Biol 9:35–40

    Article  CAS  PubMed  Google Scholar 

  • Brewer PB, Dun EA, Ferguson BJ, Rameau C, Beveridge CA (2009) Strigolactone acts downstream of auxin to regulate bud outgrowth in pea and Arabidopsis. Plant Physiol 150:452–493

    Article  Google Scholar 

  • Brewer PB, Dun EA, Gui R, Mason MG, Beveridge CA (2015) Strigolactone inhibition of branching independent of polar auxin transport. Plant Physiol 168:1820–1829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung MY, Chung MG (2003) The breeding systems of Cremastra appendiculata and Cymbidium goeringii: high levels of annual fruit failure in two self-compatible orchids. Ann Bot Fenn 40:81–85

    Google Scholar 

  • Cline M (1991) Apical dominace. Bot Rev 57:318–358

    Article  Google Scholar 

  • Crawford S, Shinohara N, Sieberer T, Williamson L, George G, Hepworth J, Muller D, Domagalska MA, Leyser O (2010) Strigolactones enhance competition between shoot branches by dampening auxin transport. Development 137(17):2905–2913

    Article  CAS  PubMed  Google Scholar 

  • Domagalska MA, Leyser O (2011) Signal integration in the control of shoot branching. Nat Rev Mol Cell Biol 12(4):211–221

    Article  CAS  PubMed  Google Scholar 

  • Dun EA, Ferguson BJ, Beveridge CA (2006) Apical dominance and shoot branching: divergent opinions or divergent mechanisms? Plant Physiol 142:812–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferguson BJ, Beveridge CA (2009) Roles for auxin, cytokinin, and strigolactone in regulating shoot branching. Plant Physiol 149(4):1929–1944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Offringa R, Jürgens G (2003) Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426:147–153

    Article  CAS  PubMed  Google Scholar 

  • Ikeda Y, Nonaka H, Furumai T, Igarashi Y (2005) Cremastrine, a pyrrolizidine alkaloid from Cremastra appendiculata. J Nat Prod 68:572–573

    Article  CAS  PubMed  Google Scholar 

  • Jin MH, Hong SH, Park C, Chol YH, Park SE (2014) Anti-cancer effect of Oldenlandia diffusa, Cremastra appendiculata and Fritillaria thunbergii on MCF-7 Cells. Orient Physiol Pathol 28(3):310–316

    Google Scholar 

  • Leyser O (2006) Dynamic integration of auxin transport and signaling. Curr Biol 16:R424–R433

    Article  CAS  PubMed  Google Scholar 

  • Li ZL (1987) Plant slice technology, 2nd edn. Science Press, Beijing (in Chinese)

    Google Scholar 

  • Li H (1996) A report on four cases of liver carcinoma by topical adhesive metlhod. J Tradit Chin Med 16:243–246

    CAS  PubMed  Google Scholar 

  • Li CJ, Bangerth F (1999) Autoinhibition of indoleacetic acid transport in the shoots of two-branched pea (Pisum sativum) plants and its relationship to correlative dominance. Physiol Plant 106:415–420

    Article  CAS  Google Scholar 

  • Mason MG, Ross JJ, Babst BA, Wienclaw BN, Beveridge CA (2014) Sugar demand, not auxin, is the initial regulator of apical dominance. Proc Nat Acad Sci USA 111(16):6092–6097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyawaki K, Matsumoto-Kitano M, Kakimoto T (2004) Expression of cytokinin biosynthetic isopentenyltrasferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate. Plant Journal 37:128–138

    Article  CAS  PubMed  Google Scholar 

  • Morris DA (1977) Transport of exogenous auxin in two-branched dwarf pea seedlings. Planta 36:91–96

    Article  Google Scholar 

  • Morris SE, Cox MCH, Ross JJ, Kristantini S, Beveridge CA (2005) Auxin dynamics after decapitation are not correlated with the initial growth of axillary buds. Plant Physiol 138:1665–1672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nordstrom A, Tarkowski P, Tarkowska D, Norbaek R, Astot C, Dolezal K, Sandberg G (2004) Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: a factor of potential importance for auxin-cytokinin-regulated development. Proc Nat Acad Sci USA 101:8039–8044

    Article  PubMed  PubMed Central  Google Scholar 

  • Rameau C, Bertheloot J, Leduc N, Andrieu B, Foucher F, Sakr S (2015) Multiple pathways regulate shoot branching. Front Plant Sci 5:741–756

    Article  PubMed  PubMed Central  Google Scholar 

  • Sachs T, Thimann V (1967) The role of auxins and cytokinins in the release of buds from dominance. Am J Bot 54:136–144

    Article  CAS  Google Scholar 

  • Shi TX, Gu LL, Chen ZL, Chen QF (2014) Content analysis of flavonoids, soluble protein, soluble sugar in F. cymosum leafs. Jiangsu Agric Sci 42:252–255

    Google Scholar 

  • Shim JS, Kim JH, Lee JY, Kim SN, Kwon HJ (2004) Anti-angiogenic activity of a homoisoflavanone from Cremastra appendiculata. Planta Med 70:171–173

    Article  CAS  PubMed  Google Scholar 

  • Snow R (1931) Experiments on growth and inhibition. Part II. New phenomena of inhibition. Proc R Soc Lond B 108:305–316

    Article  Google Scholar 

  • Snow R (1937) On the nature of correlative inhibition. New Phytol 36:283–300

    Article  CAS  Google Scholar 

  • Tanaka M, Takei K, Kojima M, Sakakibara H, Mori H (2006) Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance. Plant J 45:1028–1036

    Article  CAS  PubMed  Google Scholar 

  • Thimann KV, Skoog F (1933) Studies on the growth hormone of plants. III. The inhibitory action of the growth substance on bud development. Proc Nat Acad Sci USA 19:714–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tucker DJ, Mansfield TA (1971) Effects of light quality on apical dominance in Xanthium strumarium and the associated changes in endogenous levels of abscisic acid and cytokinins. Planta 102:140–151

    Article  CAS  PubMed  Google Scholar 

  • White JC, Medlow GC, Hillman JR, Wilkins MB (1975) Correlative inhibition of lateral bud growth in Phaseolus vulgaris L: isolation ofindoleacetic acid from the inhibitory region. J Exp Bot 26:419–424

    Article  CAS  Google Scholar 

  • Zhang MS, Wu SJ, Jie XJ, Zhang LX, Jiang XH, Du JC, Qi JL, Liu Z, Yang YH (2006) Effect of endophyte extract on micropropagation of Cremastra appendiculata (D. Don) Makino (Orchidaceae). Propag Ornam Plants 6(2):83–89

    Google Scholar 

  • Zhang MS, Peng SW, Wang W (2010) Macro research on growth and development of Cremastra appendiculata (D.Don.) Makino (Orchidaceae). J Med Plants Res 4(18):1837–1842

    Google Scholar 

Download references

Acknowledgements

This research was funded to MSZ by a grant from the Natural Science Foundation of China (No. 81360613), and the Project of High-level Innovative Talents in Guizhou (No. 2015-4031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Sheng Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, X., Zhang, MS., Wu, YQ. et al. The Roles of Auxin in Regulating “Shoot Branching” of Cremastra appendiculata . J Plant Growth Regul 36, 281–289 (2017). https://doi.org/10.1007/s00344-016-9638-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-016-9638-6

Keywords

Navigation