Skip to main content

Advertisement

Log in

Proteomic Analysis of Phloem Proteins Leads to the Identification of Potential Candidates for JA-Mediated RKN-Resistant Elements in Solanum lycopersicum

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Tomato production has been severely affected by root-knot nematode (RKN) diseases, leading to huge economic losses in tomato cultivation, production, and processing. To gain insight into the signal mechanism of resistance to RKN (Meloidogyne incongnita), tomato lines with different endogenous jasmonic acid levels were inoculated with RKN, and the differential proteome of their phloem was analyzed with two-dimensional gel electrophoresis. Analysis of 1400 protein spots from each gel revealed 74 differentially expressed proteins, 30 of which were identifed via matrix-assisted laser-desorption ionization time-of-flight mass spectrometry (MALDI-TOF–MS). Among these 30, the abundance of 25 proteins was elevated in 35S::PS, and five proteins were not expressed in spr2. The total differentially expressed proteins were grouped into multiple functional categories, the largest of which was energy conversion (38 %). Furthermore, we proposed several candidates that might function as potential signal molecules under RKN stress and dissected the multiple roles of proteins related to photosynthesis and energy conversion. The mRNA levels of nine proteins associated with defense responses and energy metabolism were analyzed by qRT-PCR, and the expression levels of five were in line with the proteome data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Afzal AJ, Natarajan A, Saini N, Iqbal MJ, Geisler M, El Shemy HA, Mungur R, Willmitzer L, Lightfoot DA (2009) The nematode resistance allele at the rhg1 locus alters the proteome and primary metabolism of soybean roots. Plant Physiol 151:1264–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Callahan FE, Jenkins JN, Creech RG, Lawrence GW (1997) Changes in cotton root proteins correlated with resistance to root knot nematode development. J Cotton Sci 1:38–47

    CAS  Google Scholar 

  • Carlson M (1998) Regulation of glucose utilization in yeast. Curr Opin Genet Dev 8:560–564

    Article  CAS  PubMed  Google Scholar 

  • Cooper WR, Jia L, Goggin L (2005) Effects of jasmonate-induced defenses on root-knot nematode infection of resistant and susceptible tomato cultivars. J Chem Ecol 31:1953–1967

    Article  CAS  PubMed  Google Scholar 

  • Curtis D, Lehmann R, Zamore PD (1995) Translational regulation in development. Cell 81:171–178

    Article  CAS  PubMed  Google Scholar 

  • de Moor C, Richter JD (2001) Translational control in vertbrate development. In: Etkin LD, Jeon KW (eds) Cell lineage specification and patterning of the embryo. Academic Press, San Diego, pp 567–608

    Chapter  Google Scholar 

  • Ding CK, Wang C, Gross KC, David LS (2002) Jasmonate and salicylate induce the expression of pathogenesis-related-protein genes and increase resistance to chilling injury in tomato fruit. Planta 214(6):895–901

    Article  CAS  PubMed  Google Scholar 

  • Dropkin VH (1969) Cellular responses of plants to nematode infections. Annu Rev Phytopathol 7:101–122

    Article  CAS  Google Scholar 

  • Epstein PN, Boschero AC, Atwater I, Cai X, Overbeek PA (1992) Expression of yeast hexokinase in pancreatic β cells of transgenic mice reduces blood glucose, enhances insulin secretion, and decreases diabetes. Proc Natl Acad Sci USA 89:12038–12042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan JW, Hu CL, Zhang LN, Li ZL, Zhao FK, Wang SH (2015) Jasmonic acid mediates tomato’s response to root knot nematodes. J Plant Growth Regul 34:196–205

    Article  CAS  Google Scholar 

  • Faurobert M, Pelpoir E, Chab J (2007) Phenol extraction of proteins for proteomic studies of recalcitrant plant tissues. Methods Mol Biol 355:9–14

    CAS  PubMed  Google Scholar 

  • Fedoroff NV (2002) RNA-binding proteins in plants: the tip of an iceberg? Curr Opin Plant Biol 5:452–459

    Article  CAS  PubMed  Google Scholar 

  • Förster B, Mathesius U, Pogson BJ (2006) Comparative proteomics of high light stress in the model alga Chlamydomonas reinhardtii. Proteomics 6:4309–4320

    Article  PubMed  Google Scholar 

  • Fujimoto T, Tomitakab Y, Abec H, Tsudab S, Futaia K, Mizukubob T (2011) Expression profile of jasmonic acid-induced genes and the induced resistance against the root-knot nematode (Meloidogyne incognita) in tomato plants (Solanum lycopersicum) after foliar treatment with methyl jasmonate. J Plant Physiol 168:1084–1097

    Article  CAS  PubMed  Google Scholar 

  • Gancedo JM (1998) Yeast carbon catabolite repression. Microbiol Mol Biol Rev 62:334–361

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gómez-Ariza J, Campo S, Rufat M, Estopà M, Messeguer J, San Segundo B, Coca M (2007) Sucrose-mediated priming of plant defense responses and broad-spectrum disease resistance by overexpression of the maize pathogenesis-related PRms protein in rice plants. Mole Plant-Microbe In 20(7):832–842

    Article  Google Scholar 

  • Grupe A, Hultgren B, Ryan A, Ma YH, Bauer M, Stewart TA (1995) Transgenic knockouts reveal a critical requirement for pancreatic β cell glucokinase in maintaining glucose homeostasis. Cell 83:69–78

    Article  CAS  PubMed  Google Scholar 

  • Gupta AK, Kaur N (2005) Sugar signalling and gene expression in relation to carbohydrate metabolism under abiotic stresses in plants. J Biosci 30:761–776

    Article  CAS  PubMed  Google Scholar 

  • Hammond-Kosack KE, Atkinson HJ, Bowles DJ (1990) Changes in abundance of translatable mRNA species in potato roots and leaves following root invasion by cyst-nematode G, rostochiensis pathotypes. Physiol Mol Plant Pathol 37:339–354

    Article  CAS  Google Scholar 

  • Heil M, Ton J (2008) Long-distance signalling in plant defence. Trends Plant Sci 13:264–272

    Article  CAS  PubMed  Google Scholar 

  • Herbers K, Meuwly P, Frommer WB, Metraux JP, Sonnewald U (1996) Systemic acquired resistance mediated by the ectopic expression of invertase: possible hexose sensing in the secretory pathway. Plant Cell 8:793–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarsch IK, Ott T (2011) Perspectives on remorin proteins, membrane rafts, and their role during plant–microbe interactions. Mol Plant Microbe Interact 24:7–12

    Article  CAS  PubMed  Google Scholar 

  • Jensen RG (2000) Activation of Rubisco regulates photosynthesis at high temperature and CO2. Proc Natl Acad Sci USA 97:12937–12938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnston M (1999) Feasting, fasting and fermenting: glucose sensing in yeast and other cells. Trends Genet 15:29–33

    Article  CAS  PubMed  Google Scholar 

  • Johnstone O, Lasko P (2001) Translational regulation and RNA localization in Drosophila oocytes and embryos. Annu Rev Genet 35:365–406

    Article  CAS  PubMed  Google Scholar 

  • Jorge I, Navarro RM, Lenz C, Ariza D, Porras C, Jorrín J (2005) The Holm Oak leaf proteome: analytical and biological variability in the protein expression level assessed by 2-DE and protein identification tandem mass spectrometry de novo sequencing and sequence similarity searching. Proteomics 5:222–234

    Article  CAS  PubMed  Google Scholar 

  • Katayama H, Nagasu T, Oda Y (2001) Improvement of in-gel digestion protocol for peptide mass fingerprinting by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 15:1416–1421

    Article  CAS  PubMed  Google Scholar 

  • Lee MO, Kim KP, Kim B, Hahn JS, Hong CB (2009) Flooding stress-induced glycine-rich RNA-binding protein from Nicotiana tabacum. Mol Cells 27:47–54

    Article  CAS  PubMed  Google Scholar 

  • León J (2013) Role of plant peroxisomes in the production of jasmonic acid-based signals. Subcell Biochem 69:299–313

    Article  PubMed  Google Scholar 

  • Li C, Liu G, Xu C, Lee GI, Bauer P, Ling HQ, Ganal MW, Howe GA (2003) The tomato suppressor of prosystemin-mediated responses2 gene encodes a fatty acid desaturase required for the biosynthesis of jasmonic acid and the production of a systemic wound signal for defense gene expression. Plant Cell 15:1646–1661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lough TJ, Lucas WJ (2006) Integrative plant biology: role of phloem long-distance macromolecular trafficking. Annu Rev Plant Biol 57:203–232

    Article  CAS  PubMed  Google Scholar 

  • Maris C, Dominguez C, Allain FHT (2005) The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. FEBS J 272:2118–2131

    Article  CAS  PubMed  Google Scholar 

  • McGurl B, Ryan CA (1992) The organization of the prosystemin gene. Plant Mol Biol 20:405–409

    Article  CAS  PubMed  Google Scholar 

  • Moeder W, Del Pozo O, Navarre DA, Martin GB (2007) Plant aconitase functions as an RNA2-binding protein and plays a role in regulating resistance to oxidative stress and hypersensitive cell death. Plant Mol Biol 63:273–287

    Article  CAS  PubMed  Google Scholar 

  • Nahar K, Kyndt T, De Vleesschauwer D, Höfte M, Gheysen G (2011) The jasmonate pathway is a key player in systemically induced defense against root knot nematodes in rice. Plant Physiol 157:305–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Bueno ML, Rahoutei J, Sajnani C, García-Luque I, Barón M (2004) Proteomic analysis of the oxygen-evolving complex of photosystem II under biotec stress: studies on Nicotiana benthamiana infected with tobamoviruses. Proteomics 4:418–425

    Article  PubMed  Google Scholar 

  • Popova LP, Stanka GV (1988) Effect of jasmonic acid on the synthesis of ribulose-1, 5-bisphosphate carboxylase-oxygenase in barley leaves. J Plant Physiol 133:210–215

    Article  CAS  Google Scholar 

  • Popova LP, Tsonev TD, Vaklinova SG (1988) Changes in some photosynthetic and photorespiratory properties in barley leaves after treatment with jasmonic acid. J Plant Physiol 132:257–261

    Article  CAS  Google Scholar 

  • Raffaele S, Bayer E, Lafarge D, Cluzet S, ReS German, Boubekeur T, Leborgne-Castel N, Carde JP, Lherminier J, Noirot E, Satiat-Jeunemaître B, Laroche-Traineau J, Moreau P, Ott T, Maule AJ, Reymond P, Simon-Plas F, Farmer EE, Bessoule JJ, Mongrand S (2009) Remorin, a Solanaceae protein resident in membrane rafts and plasmodesmata, impairs Potato virus X movement. Plant Cell 21:1541–1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rakwal R, Komatsu S (2001) Jasmonic acid-induced necrosis and drastic decreases in ribulose-1, 5-bisphosphate carboxylase/oxygenase in rice seedlings under light involves reactive oxygen species. J Plant Physiol 58:679–688

    Article  Google Scholar 

  • Roitsch T (1999) Source-sink regulation by sugar and stress. Curr Opin Plant Biol 2:198–206

    Article  CAS  PubMed  Google Scholar 

  • Salzman RA, Tikhonova I, Bordelon BP, Hasegawa PM, Bressan RA (1998) Coordinate accumulation of antifungal proteins and hexoses constitutes a developmentally controlled defense response during fruit ripening in grape. Plant Physiol 117:465–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schilmiller AL, Howe GA (2005) Systemic signaling in the wound response. Curr Opin Plant

  • Sugihara K, Hanagata N, Dubinsky Z, Baba S, Karube I (2000) Molecular characterization of cDNA encoding oxygen evolving enhancer protein 1 increased by salt treatment in the mangrove Bruguiera gymnorrhiza. Plant Cell Physiol 41:1279–1285

    Article  CAS  PubMed  Google Scholar 

  • Thorpe MR, Ferrieri AP, Herth MM, Ferrieri RA (2007) 11C-imaging: methyl jasmonate moves in both phloem and xylem, promotes transport of jasmonate, and of photoassimilate even after proton transport is decoupled. Planta 226:541–551

    Article  CAS  PubMed  Google Scholar 

  • Truman W, Bennett MH, Kubigsteltig I, Turnbull C, Grant M (2007) Arabidopsis systemic immunity uses conserved defense signaling pathways and is mediated by jasmonates. Proc Natl Acad Sci USA 104:1075–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wickens M, Bernstein D, Crittenden S, Luitjens C, Kimble J (2001) PUF proteins and 3′UTR regulation in the Caenorhabditis elegans germ line. Cold Spring Harb Symp Quant Biol 66:337–343

    Article  CAS  PubMed  Google Scholar 

  • Yang EJ, Oh YA, Lee ES, Park AR, Cho SK, Yoo YJ, Park OK (2003) Oxygen-evolving enhancer protein 2 is phosphorylated by glycine-rich protein 3/wall-associated kinase 1 in Arabidopsis. Biochem Biophys Res Commun 305:862–868

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Xing D (2008) Methyl jasmonate induces production of reactive oxygen species and alterations in mitochondrial dynamics that precede photosynthetic dysfunction and subsequent cell death. Plant Cell Physiol 49(7):1092–1111

    Article  CAS  PubMed  Google Scholar 

  • Zhao WC, Li ZL, Fan JW, Hu CL, Yang R, Qi X, Chne H, ZhaoFK Wang SH (2015) Identification of jasmonic acid-associated microRNAs and characterization of the regulatory roles of the miR319/TCP4 module under root-knot nematode stress in tomato. J Exp Bot 66:4653–4667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuang WB, Shi T, Gao ZH, Zhang Z, Zhang JY (2013) Differential expression of proteins associated with seasonal bud dormancy at four critical stages in Japanese apricot. Plant Biol 15(233–242):20

    Google Scholar 

Download references

Acknowledgments

CM, spr2, and 35S::PS seeds were donated by Prof. Chuanyou Li from the Institute of Genetics and Developmental Biology, Chinese Academy of Sciences. This work was supported by the Project of Great Wall Scholar, Beijing Municipal Commission of Education (CIT&TCD20130323) and the Modern Agricultural Industry Technology System of Beijing Innovation Team (BAIC01-2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaohui Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, W., Hao, J., Xing, J. et al. Proteomic Analysis of Phloem Proteins Leads to the Identification of Potential Candidates for JA-Mediated RKN-Resistant Elements in Solanum lycopersicum . J Plant Growth Regul 36, 96–105 (2017). https://doi.org/10.1007/s00344-016-9622-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-016-9622-1

Keywords

Navigation