Skip to main content
Log in

Assessing the effects of oyster/kelp weight ratio on water column properties: an experimental IMTA study at Sanggou Bay, China

  • Biology
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Integrated Multi-Trophic Aquaculture (IMTA) is an effective method for sustainable aquaculture as species from different trophic levels could reduce negative effects from fed species in the environment. A proper proportion of different trophic species in an IMTA system could improve the aquaculture production and environmental sustainability. At present, research on the proper proportions for farming species is scarce. We investigated the effects of IMTA modes of oyster (Crassostrea gigas) and kelp (Saccharina japonica) in different weight ratios on water quality and carbonate system in a closed enclosure experiment for three days in the Sanggou Bay in Shandong Province, China, in December 2017. Nine collocation modes in oyster:kelp weight ratio were tested showing as 24:3, 24:2, 24:1, 16:3, 16:2, 16:1, 8:3, 8:2, and 8:1. The water parameters were determined at 17:00 on Day 1 (D1), and 6:00 and 17:00 on Days 2 (D2) and 3 (D3). As two-way ANOVA showed, all increased parameters (dissolved oxygen (DO), pH, chl a, the carbonate system and p CO2) were significantly related to oyster-kelp modes, and interaction between modes and time were also significant (P<0.05). On the 3 th day, the 8:3 mode was the highest in DO, pH, chl a, CO32− (P<0.05), and dissolved inorganic carbon (DIC), HCO3, CO2 and pCO2 were the lowest (P<0.05). According to previous references and the results of this study, the appropriate oyster:kelp proportion at the beginning of winter is from 8:2 to 8:3. The results of this study may help government to optimize the aquaculture structure of Sanggou Bay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abreu M H, Varela D A, Henríquez L, Villarroel A, Yarish C, Sousa-Pinto I, Buschmann A H. 2009. Traditional vs. integrated multi-trophic aquaculture of Gracilaria chilensis C. J. Bird, J. McLachlan & E. C. Oliveira: productivity and physiological performance. Aquaculture, 293(3-4): 211–220, https://doi.org/10.1016/j.aquaculture.2009.03.043.

    Article  Google Scholar 

  • Ahn O, Petrell R J, Harrison P J. 1998. Ammonium and nitrate uptake by Laminaria saccharina and Nereocystis luetkeana originating from a salmon sea cage farm. J. Appl. Phycol., 10(4): 333–340.

    Article  Google Scholar 

  • Briggs M R P, Fvnge-Smith S. 1994. A nutrient budget of some intensive marine shrimp ponds in Thailand. Aquac. Res., 25(8): 789–811.

    Article  Google Scholar 

  • Chang J, Tian X L, Dong S L, Wang D P, Bao J, Ma S, Sun Y C, Sun J. 2006. An experimental study on nitrogen and phosphorus budgets in polyculture of shrimp, bivalve and seaweed. Period. Ocean Univ. China, 36(S1): 33–39, https://doi.org/10.3969/j.issn.1672-5174.2006.z1.006. (in Chinese with English abstract)

    Google Scholar 

  • Chopin T, Robinson S M C, Troell M, Neori A, Buschmann A H, Fang J. 2008. Multitrophic integration for sustainable marine aquaculture. In: Jørgensen S E, Fath B D eds. Encyclopedia of Ecology. Elsevier, Amsterdam. p.2463–2475, https://doi.org/10.1016/B978-008045405-4.00065-3.

    Chapter  Google Scholar 

  • Chopin T, Troell M, Reid G K, Knowler D, Robinson S M C, Neori A, Buschmann A H, Pang S J. 2010. Integrated multi-trophic aquaculture. Part I. Responsible practice provides diversified products, biomitigation. Global Aquac. Advocate, 5: 38–39.

    Google Scholar 

  • Dickson A G, Goyet C. 1994. Handbook of Methods for the Analysis of the Various Parameters of the Carbon Dioxide System in Sea Water, version 2. ORNL/CDIAC-74 US Department of Energy, Washington, DC. p.4–26.

    Google Scholar 

  • Dupuy C, Vaquer A, Lam-Höai T, Rougier C, Mazouni N, Lautier J, Collos Y, Le Gall S. 2000. Feeding rate of the oyster Crassostrea gigas in a natural planktonic community of the Mediterranean Thau Lagoon. Mar. Ecol. Prog. Ser., 205: 171–184, https://doi.org/10.3354/meps205171.

    Article  Google Scholar 

  • Fang J G, Zhang J, Xiao T, Huang D J, Liu S M. 2016. Integrated multi-trophic aquaculture (IMTA) in Sanggou Bay, China. Aquac. Environ. Interact., 8: 201–205, https://doi.org/10.3354/aei00179.

    Article  Google Scholar 

  • Fang J H, Zhang J H, Wu W G, Mao Y Z, Jiang Z J, Fang J G. 2014. Carbon and nitrogen budget and environmental optimization in an integrated cage culture model of Japanese flounder with Perinereis aibuhitensis. J. Fish. Sci. China, 21(2): 390–397. (in Chinese with English abstract)

    Google Scholar 

  • FAO. 2016. The State of World Fisheries and Aquaculture 2016 (SOFIA): Contributing to Food Security and Nutrition for All. The State of World Fisheries and Aquaculture, Rome.

    Google Scholar 

  • Gillibrand P A, Turrell W R, Moore D C, Adams R D. 1996. Bottom water stagnation and oxygen depletion in a Scottish sea loch. Estuar., Coast. Shelf. Sci., 43(2): 217–235, https://doi.org/10.1006/ecss.1996.0066.

    Article  Google Scholar 

  • Han T, Jiang Z, Fang J, Zhang J, Mao Y, Zou J, Huang Y, Wang D. 2013. Carbon dioxide fixation by the seaweed Gracilaria lemaneiformis in integrated multi-trophic aquaculture with the scallop Chlamys farreri in Sanggou Bay, China. Aquacult Int., 21(5): 1 035-1 043, https://doi.org/10.1007/s10499-012-9610-9.

    Article  Google Scholar 

  • Inui M, Itsubo M, Iso S. 1991. Creation of a new nonfeeding aquaculture system in enclosed coastal seas. Mar. Pollut. Bull., 23: 321–325, https://doi.org/10.1016/0025-326X(91)90694-N.

    Article  Google Scholar 

  • Jiang Z J, Fang J G, Mao Y Z, Wang W. 2010. Eutrophication assessment and bioremediation strategy in a marine fish cage culture area in Nansha Bay, China. J. Appl. Phycol., 22(4): 421–426, https://doi.org/10.1007/s10811-009-9474-1.

    Article  Google Scholar 

  • Jiang Z J, Wang G H, Fang J G, Mao Y Z. 2013. Growth and food sources of Pacific oyster Crassostrea gigas integrated culture with Sea bass Lateolabrax japonicus in Ailian Bay, China. Aquac. Int., 21(1): 45–52, https://doi.org/10.1007/s10499-012-9531-7.

    Article  Google Scholar 

  • Langan R. 2004. Balancing marine aquaculture inputs and extraction: combined culture of finfish and bivalve molluscs in the open ocean. Bull. Fish. Res. Agen., (S1): 51–58.

    Google Scholar 

  • Lartigue J, Sherman T D. 2005. Response of Enteromorpha sp. (Chlorophyceae) to a nitrate pulse: nitrate uptake, inorganic nitrogen storage and nitrate reductase activity. Mar. Ecol. Prog. Ser., 292: 147–157.

    Article  Google Scholar 

  • Liu Z L, Chen J F, Liu Y L, Gao S Q, Li H L, Zhang H S. 2011. The size-fractionated chlorophyll a concentration and primary productivity in the Bering Sea in the summer of 2008. Acta Oceanol. Sin., 33(3): 148–157. (in Chinese with English abstract)

    Google Scholar 

  • Lu J C, Huang L F, Xiao T, Jiang Z J, Zhang W C. 2015. The effects of Zhikong scallop (Chlamys farreri) on the microbial food web in a phosphorus-deficient mariculture system in Sanggou Bay, China. Aquaculture, 448: 341–349, https://doi.org/10.1016/j.aquaculture.2015.06.021.

    Article  Google Scholar 

  • Mao Y Z, Yang H S, Zhou Y, Hu Z F, Yuan X T, You K, Wang R C. 2006. Studies on growth and photosynthesis characteristics of Gracilaria lemaneiformis and its capacity to uptake ammonium and phosphorus from scallop excretion. Acta Ecol. Sin., 26(10): 3225–3231. (in Chinese with English abstract)

    Google Scholar 

  • Mao Y Z, Yang H S, Zhou Y, Ye N H, Fang J G. 2009. Potential of the seaweed Gracilaria lemaneiformis for integrated multi-trophic aquaculture with scallop Chlamys farreri in North China. J. Appl. Phycol., 21(6): 649–656, https://doi.org/10.1007/s10811-008-9398-1.

    Article  Google Scholar 

  • Mazzola A, Sarà G. 2001. The effect of fish farming organic waste on food availability for bivalve molluscs (Gaeta Gulf, central Tyrrhenian, MED): stable carbon isotopic analysis. Aquaculture, 192(2-4): 361–379, https://doi.org/10.1016/S0044-8486(00)00463-4.

    Article  Google Scholar 

  • Ning Z M, Liu S M, Zhang G L, Ning X Y, Li R H, Jiang Z J, Fang J G, Zhang J. 2016. Impacts of an integrated multitrophic aquaculture system on benthic nutrient fluxes: a case study in Sanggou Bay, China. Aquac. Environ. Interact., 8: 221–232, https://doi.org/10.3354/aei00144.

    Article  Google Scholar 

  • Pedersen A, Kraemer G, Yarish C. 2004. The effects of temperature and nutrient concentrations on nitrate and phosphate uptake in different species of Porphyra from Long Island Sound (USA). J. Exp. Mar. Biol. Ecol., 312(2): 235–252, https://doi.org/10.1016/j.jembe.2004.05.021.

    Article  Google Scholar 

  • Phillips J C, Hurd C L. 2003. Nitrogen ecophysiology of intertidal seaweeds from New Zealand: N uptake, storage and utilisation in relation to shore position and season. Mar. Ecol. Prog. Ser., 264: 31–48, https://doi.org/10.3354/meps264031.

    Article  Google Scholar 

  • Rueda J L, Smaal A C, Scholten H. 2005. A growth model of the cockle (Cerastoderma edule L.) tested in the Oosterschelde estuary (The Netherlands). J. Sea Res., 54(4): 276–298, https://doi.org/10.1016/j.seares.2005.06.001.

    Article  Google Scholar 

  • Sarà G, Mazzola A. 2004. The carrying capacity for Mediterranean bivalve suspension feeders: evidence from analysis of food availability and hydrodynamics and their integration into a local model. Ecol. Modell., 179(3): 281–296, https://doi.org/10.1016/j.ecolmodel.2004.03.005.

    Article  Google Scholar 

  • Stenton-Dozey J. 2007. Finding hidden treasure in aquaculture waste. Water Atmos, 15(4): 10–11.

    Google Scholar 

  • Tang Q S, Fang J G, Zhang J H, Jiang Z J, Liu H M. 2013. Impacts of multiple stressors on coastal ocean ecosystems and integrated multi-trophic aquaculture. Prog. Fish. Sci., 34(1): 1–11, https://doi.org/10.3969/j.issn.1000-7075.2013.01.001. (in Chinese with English abstract)

    Google Scholar 

  • Tang Q S, Zhang J H, Fang J G. 2011. Shellfish and seaweed mariculture increase atmospheric CO2 absorption by coastal ecosystems. Mar. Ecol. Prog. Ser., 424: 97–104, https://doi.org/10.3354/meps08979.

    Article  Google Scholar 

  • Troell M, Joyce A, Chopin T, Neori A, Buschmann A H, Fang J G. 2009. Ecological engineering in aquaculture—potential for integrated multi-trophic aquaculture (IMTA) in marine offshore systems. Aquaculture, 297(1-4): 1–9, https://doi.org/10.1016/j.aquaculture.2009.09.010.

    Article  Google Scholar 

  • Wen Y M, Wei X G, Shu T F, Zhou J F, Yu G H, Li F, Huang Y Y. 2007. Forms and balance of nitrogen and phosphorus in cage culture waters in Guangdong Province, China. Chin. Geogr. Sci., 17(4): 370–375, https://doi.org/10.1007/s11769-007-0370-9.

    Article  Google Scholar 

  • Wu R S S. 1995. The environmental impact of marine fish culture: towards a sustainable future. Mar. Pollut. Bull., 31(4-12): 159–166, https://doi.org/10.1016/0025-326X(95)00100-2.

    Article  Google Scholar 

  • Zhang Y. 2012. Comparison of culture effect, discharge of nitrogen and phosphorus and environmental influence for three kinds of cages. Huazhong Agriculture University, Wuhan. (in Chinese with English abstract)

    Google Scholar 

  • Zhang Z H, Lü J B, Ye S F, Zhu M Y. 2007. Values of marine ecosystem services in Sanggou Bay. Chin. J. Appl. Ecol., 18(11): 2 540-2 547. (in Chinese with English abstract)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinghui Fang or Zengjie Jiang.

Additional information

Supported by the National Key R&D Program of China (No. 2019YFD0900803), the National Natural Science Foundation of China (No. 41876185), the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology (Qingdao) (No. 2018SDKJ0502), the Youth Talent Program Supported by Laboratory for Marine Fisheries Science and Food Production Processes of Pilot National Laboratory for Marine Science and Technology (Qingdao) (No. 2018-MFS-T13), and the Modern Agro-industry Technology Research System (No. CARS-49)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, J., Fang, J., Chen, Q. et al. Assessing the effects of oyster/kelp weight ratio on water column properties: an experimental IMTA study at Sanggou Bay, China. J. Ocean. Limnol. 38, 1914–1924 (2020). https://doi.org/10.1007/s00343-019-9109-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-019-9109-6

Keyword

Navigation