Skip to main content
Log in

Formation and evolution of the tertiary carbonate reefs in the Madura Strait Basin of Indonesia

  • Geology
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Analysis of 2D seismic data over 4 500 km in length from the Madura Strait Basin in the East Java Sea reveals seismic reflection characteristics of reefs and associated sedimentary bodies, including asymmetrical or symmetrical dome reflections, slope progradational reflections, chaotic reflections and discontinuous strong reflections inside the reef, which onlap the flank of the reef. It is concluded that the developmental paleo-environment of most reefs is mainly conducive to shallow marine carbonate platform facies and platform margin facies, based on well core data, variations in seismic facies and strata thickness. The formation and evolution of all reefs are primarily influenced by the tectonic framework of the Madura Strait Basin. Platform margin reefs are principally controlled by two types of structures: one is a series of E-W trending Paleogene normal faults, and the other is an E-W trending Neogene inversion structures. In addition, wave actions, tidal currents and other ocean currents play an accelerated role in sorting, rounding and redeposition for the accumulation and evolution of reefs. Tertiary reefs in the MSB can be divided into four types: 1) an open platform coral reef of Late Oligocene to Early Miocene, 2) a platform margin coral reef controlled by normal faults in Late Oligocene to Early Miocene, 3) a platform margin Globigerina moundreef controlled by a “hidden” inversion structure in Early Pliocene, and 4) a platform margin Globigerina mound-reef controlled by thrust faults in the early Pliocene. Patterns of the formation and evolution of reefs are also suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arifin M T, Ferguson A. 2017. Reservoir characterization using seismic attributes and inversion analysis of Globigerina Limestone reservoir, Madura Strait, Indonesia. In: Proceedings of the 41st Annual Convention Indonesian Petroleum Assocation. IPA, Jakarta. p.1–16.

    Book  Google Scholar 

  • Brown L F Jr, Fisher W L. 1980. Seismic stratigraphic interpretation and petroleum exploration: interpretation of depositional systems and lithofacies from seismic data. I n: AAPG Continuing Education Course Note Series. AAPG, McLean, VA. p.1–125.

    Google Scholar 

  • Bubb J N, Hatlelid W G. 1978. Seismic stratigraphy and global changes of sea level, part 10: seismic recognition of carbonate buildups. AAPG Bulletin, 62 (5): 772–791.

    Google Scholar 

  • Clements B, Hall R, Smyth H R, Cottam M A. 2009. Thrusting of a volcanic arc: a new structural model for Java. Petroleum Geoscience, 15 (2): 159–174.

    Article  Google Scholar 

  • Clements B, Hall R. 2011. A record of continental collision and regional sediment flux for the cretaceous and palaeogene core of SE Asia: implications for early Cenozoic palaeogeography. Journal of the Geological Society, 168 (5): 1 187–1 200.

    Article  Google Scholar 

  • Du Y, Fang G H. 2011. Progress on the study of the Indonesian Seas and Indonesian throughflow. Advances in Earth Science, 26 (11): 1 131–1 142.

    Google Scholar 

  • Eberli G P, Masaferro J L, Sarg J F. 2004. Seismic Imaging of Carbonate Reservoirs and Systems. A APG Memoir, 81 (81): 1–9.

    Google Scholar 

  • Fan X J. 2015. Control sedimentation characteristics of upper Permian Changxing formation in Yuanba area and its control action for reservoir. Journal of Southwest Petroleum University ( Science & Technology Edition ), 37 (2): 39–48. (in Chinese with English abstract)

    Google Scholar 

  • Fang G H, Susanto R D, Wirasantosa S, Qiao F L, Supangat A, Fan B, Wei Z X, Sulistiyo B, Li S J. 2010. Volume, heat, and freshwater transports from the South China Sea to Indonesian seas in the boreal winter of 2007–2008. Journal of Geophysical Research: Oceans, 115 (C12): C12020.

    Book  Google Scholar 

  • Fontaine J M, Cussey R, Lacaze J, Lanaud R, Yapaudjian Y. 1987. Seismic interpretation of carbonate depositional environments. AAPG Bulletin, 71 (3): 281–297.

    Google Scholar 

  • Gordon A L, Susanto R D, Vranes K. 2003. Cool Indonesian throughflow as a consequence of restricted surface layer flow. Nature, 425 (6960): 824–828.

    Article  Google Scholar 

  • Grammer G M, Ginsburg R N, Swart P K, McNeill D F, Jull A J T, Prezbindowski D R. 1993. Rapid growth rates of syndepositional marine aragonite cements in steep marginal slope deposits, Bahamas and Belize. Journal of Sedimentary Petrology, 63 (5): 983–989.

    Google Scholar 

  • Gu J Y, Ma F, Ji L D. 2009. Types, characteristics and main controlling factors of carbonate platform. Journal of Palaeogeography, 11 (1): 21–27. (in Chinese with English abstract)

    Google Scholar 

  • Hall R, Sevastjanova I. 2012. Australian crust in Indonesia. Australian Journal of Earth Sciences, 59 (6): 827–844.

    Article  Google Scholar 

  • Hall R. 1996. Reconstructing Cenozoic SE Asia. Geological Society, London, Special Publications, 106 (1): 153–184.

    Article  Google Scholar 

  • Hall R. 1997. Cenozoic plate tectonic reconstructions of SE Asia. Geological Society, London, Special Publications, 126 (1): 11–23.

    Article  Google Scholar 

  • Hall R. 2002. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer–based reconstructions, model and animations. Journal of Asian Earth Sciences, 20 (4): 353–431.

    Article  Google Scholar 

  • Hall R. 2012. Late Jurassic–Cenozoic reconstructions of the Indonesian region and the Indian Ocean. Tectonophysics, 570–571: 1–41, https://doi.org/10.1016/j.tecto.2012.04.021.

    Article  Google Scholar 

  • Hamilton W. 1979. Tectonics of the Indonesian Region. United States Government Printing Office, Washington, USA.

    Google Scholar 

  • Handford C R, Loucks R G. 1993. Carbonate Depositional Sequences and Systems Tracts––Responses of Carbonate Platforms to Relative Sea–Level Changes: Chapter 1. AAPG Special Volumes, 168: 3–41.

    Google Scholar 

  • Jin Z K, Shi L, Gao B S, Yu K H. 2013. Carbonate facies and facies models. Acta Sedimentologica Sinica, 31 (6): 965–979. (in Chinese with English abstract)

    Google Scholar 

  • Kopp H, Flueh E R, Petersen C J, Weinrebe W, Wittwer A, Scientists M. 2006. The Java margin revisited: evidence for subduction erosion offJava. Earth and Planetary Science Letters, 242 (1–2): 130–142.

    Article  Google Scholar 

  • Kusumastuti A, Van Rensbergen P, Warren J K. 2002. Seismic sequence analysis and reservoir potential of drowned Miocene carbonate platforms in the Madura Strait, East Java, Indonesia. AAPG Bulletin, 86 (2): 213–232.

    Google Scholar 

  • Li Q F, Miao S D, Jiang Q C, Wang T S, Xu A N, Zhai X F. 2015. Sedimentary characteristics and reef–forming model of Changxing Formation in Panlongdong Section of Xuanhan, Sichuan. Journal of Jilin University ( Earth Science Edition ), 45 (5): 1 322–1 331. (in Chinese with English abstract)

    Google Scholar 

  • Longley I M. 1997. The tectonostratigraphic evolution of SE Asia. Geological Society, London, Special Publications, 126 (1): 311–339.

    Article  Google Scholar 

  • Matthews S J, Bransden P J E. 1995. Late Cretaceous and Cenozoic tectono–stratigraphic development of the East Java Sea basin, Indonesia. Marine and Petroleum Geology, 12 (5): 499–510.

    Article  Google Scholar 

  • Nayoan G A S, Arpandi, Siregar M. 1981. Tertiary carbonate reservoirs in Indonesia. In: Energy Resources of the Pacific Region. AAPG, McLean, VA. p.133–145.

    Google Scholar 

  • Ni J E, Sun L C, He J, Jiang B Z, Wang H Q, Wang L, Guo L N. 2016. Characteristics of globigerinid limestone reservoirs of bottom current deposition in Gas Field A of Madura Strait, Indonesia. Oil & Gas Geology, 37 (5): 773–778. (in Chinese with English abstract)

    Google Scholar 

  • Read J F. 1985. Carbonate platform facies models. AAPG Bulletin, 69 (1): 1–21.

    Google Scholar 

  • Rutley D W. 2001. East Java, Indonesia. Exploration Geophysics, 32(3–4): 275–278.

    Google Scholar 

  • Satyana A H. 2002. Oligo–Miocene reefs: east Java’s giant fields. In: Sidi F H, Setiawan A eds. Proceedings of Giant Field and New exploration concepts seminar. Indonesian Association of Geologists (IAGI), Jakarta. p.45–62.

  • Satyana A H. 2005. Oligo–Miocene carbonates of Java, Indonesia: tectono–volcanic setting and petroleum implications. Proceedings of the 30th Annual Convention. Indonesian Petroleum Association (IPA), Jakarta. 1: 217–249.

    Google Scholar 

  • Schiller D M, Seubert B W, Musliki S, Abdullah M. 1994. The reservoir potential of globigerinid sands in Indonesia. Proceedings of the 23rd Annual Convention. AAPG, McLean, VA. 1: 189–212.

    Google Scholar 

  • Sevastjanova I, Clements B, Hall R, Belousova E A, Griffin W L, Pearson N. 2011. Granitic magmatism, basement ages, and provenance indicators in the Malay Peninsula: insights from detrital zircon U–Pb and Hf–isotope data. Gondwana Res earch, 19 (4): 1 024–1 039.

    Article  Google Scholar 

  • Sharaf E, Simo J A, Carroll A R, Shields M. 2005. Stratigraphic evolution of Oligocene–Miocene carbonates and siliciclastics, East Java Basin, Indonesia. AAPG Bulletin, 89 (6): 799–819.

    Article  Google Scholar 

  • Shinoda T, Han W Q, Metzger E J, Hurlburt H E. 2012. Seasonal variation of the Indonesian throughflow in Makassar Strait. Journal of Physical Oceanography, 42 (7): 1 099–1 123.

    Article  Google Scholar 

  • Simandjuntak T O, Barber A J. 1996. Contrasting tectonic styles in the Neogene orogenic belts of Indonesia. Geological Society, London, Special Publications, 106 (1): 185–201.

    Article  Google Scholar 

  • Smyth H R, Hamilton P J, Hall R, Kinny P D. 2007. The deep crust beneath island arcs: inherited zircons reveal a Gondwana continental fragment beneath East Java, Indonesia. Earth and Planetary Science Letters, 258 (1–2): 269–282.

    Article  Google Scholar 

  • Tapponnier P, Peltzer G, Armijo R. 1986. On the mechanics of the collision between India and Asia. Geological Society, London, Special Publications, 19 (1): 113–157.

    Article  Google Scholar 

  • Triyana Y, Harris G I, Basden W A, Tadiar E, Sharp N C. 2007. The maleofield: an example of the Pliocene Globigerina bioclastic limestone play in the East Java Basin, Indonesia. I n: Proceedings of the 31st Annual IPA Convention. Indonesian Petroleum Association, Jakarta. p.45–61.

    Google Scholar 

  • Vail P R, Mitchum R M Jr, Thompson III S. 1977. Seismic stratigraphy and global changes of sea level: part 3. Relative changes of sea level from coastal onlap: section 2. Application of seismic reflection configuration to stratigrapic interpretation. I n: Seismic Stratigraphy—Applications to Hydrocarbon Exploration. AAPG, McLean, VA. p.63–81.

    Google Scholar 

  • Wei P S, Liu Q X, Zhang J L, Chen Q L, Zhang H Q. 2006. Re–discussion of relationship between reef and giant oilgas fields. Acta Petrolei Sinica, 27 (2): 38–42. (in Chinese with English abstract)

    Google Scholar 

  • Wilson J L. 1975. The stratigraphy of carbonate deposits. In: Wilson J L ed. Carbonate Facies in Geologic History. Springer, New York. p.20–55.

    Book  Google Scholar 

  • Wilson M E J. 2002. Cenozoic carbonates in Southeast Asia: implications for equatorial carbonate development. Sedimentary Geology, 147 (3–4): 295–428.

    Article  Google Scholar 

  • Wu S G, Yuan S Q, Zhang G C, Ma Y B, Mi L J, Xu N. 2009. Seismic characteristics of a reef carbonate reservoir and implications for hydrocarbon exploration in deepwater of the Qiongdongnan Basin, northern South China Sea. Marine and Petroleum Geology, 26 (6): 817–823.

    Article  Google Scholar 

  • Xu H, Sun J, Liao J, Dong G, Liu J Q, Song H Y. 2012. Bioherm petroleum reservoir types and features in main sedimentary basins of the South China Sea. Journal of Earth Science, 23 (6): 828–841.

    Article  Google Scholar 

  • Yang F Z, Luo L, Jia D, Zhu H Q, Wu L, Li X. 2011. Cenozoic tectonic evolution of the East Java Basin, Indonesia. Geological Journal of China Universities, 17 (2): 240–248. (in Chinese with English abstract)

    Google Scholar 

  • Yang Z, Zhang G X, Zhang L, Wu S G, Zhu Y H, Qiang K S, Yan W. 2017a. The Spatial and Temporal Distributions of Miocene Carbonate Platform in Xisha Sea Area and Its Reservoir Model. Acta Geologica Sinica, 91 (6): 1 360–1 373. (in Chinese with English abstract)

    Google Scholar 

  • Yang Z, Zhang G X, Zhang L, Yan W, Lin Z, Luo S B, Qian X. 2017b. The style and hydrocarbon prospects of reefs in the Beikang Basin, southern South China Sea. Geology in China, 44 (3): 428–438. (in Chinese with English abstract).

    Google Scholar 

  • Yang Z, Zhang G X, Zhang L. 2016. The evolution and main controlling factors of reef and carbonate platform in Wan’an Basin. Earth Science, 41 (8): 1 349–1 360. (in Chinese with English abstract)

    Google Scholar 

  • Yu K F, Zhao J X, Collerson K D, Shi Q, Chen T G, Wang P X, Liu T S. 2004. Storm cycles in the last millennium recorded in Yongshu Reef, southern South China Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 210 (1): 89–100.

    Article  Google Scholar 

  • Zhu D C, Pan G T, Mo X X, Duan L P, Liao Z L. 2004. The age of collision between India and Eurasia. Advance in Earth Sciences, 19 (4): 564–571. (in Chinese with English abstract)

    Google Scholar 

  • Zhu W L, Wang Z F, Mi L J, Du X B, Xie X N, Lu Y C, Zhang D J, Sun Z P, Liu X Y, You L. 2015. Sequence stratigraphic framework and reef growth unit of Well Xike–1 from Xisha Islands, South China Sea. Earth Science —Journal of China University of Geosciences, 40 (4): 677–687. (in Chinese with English abstract)

    Article  Google Scholar 

  • Zou C N, Zhai G M, Zhang G Y, Wang H J, Zhang G S, Li J Z, Wang Z M, Wen Z X, Ma F, Liang Y B, Yang Z, Li X, Liang K. 2015. Formation, distribution, potential and prediction of global conventional and unconventional hydrocarbon resources. Petroleum Exploration and Development, 42 (1): 14–28.

    Article  Google Scholar 

Download references

Acknowledgement

The authors wish to thank the Hangzhou Research Institute of Geology’s research team and Evaluation and Detection Technology Laboratory of Marine Mineral Resources in Qingdao research team for their contributions and the approval of this publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiwu Luan.

Additional information

Supported by the Qingdao National Laboratory for Marine Science and Technology (Nos. QNLM201708, QNLM2016ORP0206), the Scientific and Technological Innovation Project Financially Supported by Qingdao National Laboratory for Marine Science and Technology (Nos. 2017ASKJ02, 2017ASKJ01, 2016ASKJ13), the Special Fund for Land & Resources Scientific Research in the Public Interest (No. 201511037), the Natural Science Foundation of Shandong Province of China (No. ZR2016DB33), and the National Key Research and Development Program (No. 2017YFC0306706-04)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ran, W., Luan, X., Lu, Y. et al. Formation and evolution of the tertiary carbonate reefs in the Madura Strait Basin of Indonesia. J. Ocean. Limnol. 37, 47–61 (2019). https://doi.org/10.1007/s00343-018-7394-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-018-7394-0

Keyword

Navigation