Skip to main content
Log in

Chemical characterization of fractions of dissolved humic substances from a marginal sea—a case from the Southern Yellow Sea

  • Chemistry
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Marine dissolved organic matter (DOM) is one of the largest dynamic pools of organic carbon in the global carbon cycle, yet DOM is still chemically poorly characterized. To better understand the origin, composition, and cycling of DOM in the China marginal sea, dissolved humic substances (DHS) were isolated from seawaters in two locations in the Southern Yellow Sea. The DHS were subdivided into fulvic acids (FAs), humic acids (HAs) and the XAD-4 fractions. Complementary analytical approaches were used to characterize the isolated DHS samples including stable carbon isotopic composition, Fourier transform infrared spectroscopy (FTIR), 13C cross polarization magic angle spinning (CP/MAS) nuclear magnetic resonance (NMR), and pyrolysis gas chromatography-mass spectrometry (Py-GC/MS). The results demonstrated that both DHS samples encountered the influences from marine source, indicating that algal and microbial-derived materials are the predominant precursors for the studied samples. The three fractions of DHS showed different properties. FAs presented more aromatic features, whereas HAs contained more aliphatic lipids and proteinaceous materials. The XAD-4 fractions were enriched in 13C and contained more carbohydrates but less aromatic compounds. The lower molecular weight and higher heteroatom content and number of carboxyl groups for the XAD-4 fractions may give them considerable geochemical significance for aspects of trace metal species, bioavailability of pollutants, mineral weathering and water acidification in marine environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdulla H A N, Minor E C, Dias R F, Hatcher P G. 2010. Changes in the compound classes of dissolved organic matter along an estuarine transect: a study using FTIR and 13C NMR. Geochim. Cosmochim. Acta, 74 (13): 3815–3838.

    Article  Google Scholar 

  • Aiken G R, McKnight D M, Thorn K A, Thurman E M. 1992. Isolation of hydrophilic organic acids from water using nonionic macroporous resins. Org. Geochem., 18 (4): 567–573.

    Article  Google Scholar 

  • Aiken G R. 1985. Isolation and concentration techniques for aquatic humic substances. In: Aiken G R, McKnight D M, Wershaw R L, McCarthy P eds. Humic Substances in Soil, Sediment, and Water: Geochemistry, Isolation, and Characterization. John Wiley & Sons, New York. p.363–386.

    Google Scholar 

  • Bai Y, Su R G, Shi X Y. 2014. Assessing the dynamics of chromophoric dissolved organic matter in the southern Yellow Sea by excitation-emission matrix fluorescence and parallel factor analysis (EEM-PARAFAC). Cont. Shelf Res., 88: 103–116.

    Article  Google Scholar 

  • Benner R, Fogel M L, Sprague E K, Hodson R E. 1987. Depletion of 13 C in lignin and its implications for stable carbon isotope studies. Nature, 329 (6141): 708–710.

    Article  Google Scholar 

  • Benner R, Pakulski J D, McCarthy M, Hedges J I, Hatcher P G. 1992. Bulk chemical characteristics of dissolved organic matter in the ocean. Science, 255 (5051): 1561–1564.

    Article  Google Scholar 

  • Buurman P, Nierop K G J, Kaal J, Senesi N. 2009. Analytical pyrolysis and thermally assisted hydrolysis and methylation of EUROSOIL humic acid samples-a key to their source. Geoderma, 150 (1-2): 10–22.

    Article  Google Scholar 

  • Cao X Y, Aiken G R, Spencer R G M, Butler K, Mao J D, Schmidt-Rohr K. 2016. Novel insights from NMR spectroscopy into seasonal changes in the composition of dissolved organic matter exported to the Bering Sea by the Yukon River. Geochim. Cosmochim. Acta, 181: 72–88.

    Article  Google Scholar 

  • Chefetz B, Chen Y, Clapp C E, Hatcher P G. 2000. Characterization of organic matter in soils by thermochemolysis using tetramethylammonium hydroxide (TMAH). Soil Sci. Soc. Am. J., 64 (2): 583–589.

    Article  Google Scholar 

  • de la Rosa J M, González-Pérez J A, González-Vila F J, Knicker H, Araújo M F. 2011. Molecular composition of sedimentary humic acids from South West Iberian Peninsula: a multi-proxy approach. Org. Geochem., 42 (7): 791–802.

    Article  Google Scholar 

  • Esteves V I, Otero M, Duarte A C. 2009. Comparative characterization of humic substances from the open ocean, estuarine water and fresh water. Org. Geochem., 40 (9): 942–950.

    Article  Google Scholar 

  • Esteves V I, Otero M, Santos E B H, Duarte A C. 2007. Stable carbon isotope ratios of tandem fractionated humic substances from different water bodies. Org. Geochem., 38 (6): 957–966.

    Article  Google Scholar 

  • Green N W, Perdue E M, Aiken G R, Butler K D, Chen H M, Dittmar T, Niggemann J, Stubbins A. 2014. An intercomparison of three methods for the large-scale isolation of oceanic dissolved organic matter. Mar. Chem., 161: 14–19.

    Article  Google Scholar 

  • Hatcher P G, Spiker E C, Szeverenyi N M, Maciel G E. 1983. Selective preservation and origin of petroleum-forming aquatic kerogen. Nature, 305 (5934): 498–501.

    Article  Google Scholar 

  • Hedges J I, Hatcher P G, Ertel J R, Meyers-Schulte K J. 1992. A comparison of dissolved humic substances from seawater with Amazon River counterparts by 13 C-NMR spectrometry. Geochim. Cosmochim. Acta, 56 (4): 1753–1757.

    Article  Google Scholar 

  • Hedges J I, Keil R G, Benner R. 1997. What happens to terrestrial organic matter in the ocean? Org. Geochem., 27 (5-6): 195–212.

    Article  Google Scholar 

  • Hedges J I. 1992. Global biogeochemical cycles: progress and problems. Mar. Chem., 39 (1-3): 67–93.

    Article  Google Scholar 

  • Hertkorn N, Benner R, Frommberger M, Schmitt-Kopplin P, Witt M, Kaiser K, Kettrup A, Hedges J I. 2006. Characterization of a major refractory component of marine dissolved organic matter. Geochim. Cosmochim. Acta, 70 (12): 2990–3010.

    Article  Google Scholar 

  • Jacobs G A, Hur H B, Riedlinger S K. 2000. Yellow and East China Seas response to winds and currents. J. Geophys. Res., 105 (C9): 21947–21968.

    Article  Google Scholar 

  • Kisand V, Gebhardt S, Rullkötter J, Simon M. 2013. Significant bacterial transformation of riverine humic matter detected by pyrolysis GC-MS in serial chemostat experiments. Mar. Chem., 149: 23–31.

    Article  Google Scholar 

  • Koch B P, Witt M, Engbrodt R, Dittmar T, Kattner G. 2005. Molecular formulae of marine and terrigenous dissolved organic matter detected by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Geochim. Cosmochim. Acta, 69 (13): 3299–3308.

    Article  Google Scholar 

  • Koprivnjak J F, Pfromm P H, Ingall E, Vetter T A, Schmitt-Kopplin P, Hertkorn N, Frommberger M, Knicker H, Perdue E M. 2009. Chemical and spectroscopic characterization of marine dissolved organic matter isolated using coupled reverse osmosis-electrodialysis. Geochim. Cosmochim. Acta, 73 (14): 4215–4231.

    Article  Google Scholar 

  • Lam B, Baer A, Alaee M, Lefebvre B, Moser A, Williams A, Simpson A J. 2007. Major structural components in freshwater dissolved organic matter. Environ. Sci. Technol., 41 (24): 8240–8247.

    Article  Google Scholar 

  • Leenheer J A. 1981. Comprehensive approach to preparative isolation and fractionation of dissolved organic carbon from natural waters and wastewaters. Environ. Sci. Technol., 15 (5): 578–587.

    Article  Google Scholar 

  • Li H M, Shi X Y, Shang R N, Han X R. 2013. Distribution of dissolved organic carbon and its influence factors in the Bohai Sea and Yellow Sea in autumn. Mar. Environ. Sci., 32 (2): 161–164, 181. (in Chinese with English abstract)

    Google Scholar 

  • Mao J D, Cory R M, McKnight D M, Schmidt-Rohr K. 2007. Characterization of a nitrogen-rich fulvic acid and its precursor algae from solid state NMR. Org. Geochem., 38 (8): 1277–1292.

    Article  Google Scholar 

  • Mao J D, Fang X W, Lan Y Q, Schimmelmann A, Mastalerz M, Xu L, Schmidt-Rohr K. 2010. Chemical and nanometerscale structure of kerogen and its change during thermal maturation investigated by advanced solid-state 13C NMR spectroscopy. Geochim. Cosmochim. Acta, 74 (7): 2110–2127.

    Article  Google Scholar 

  • Mao J D, Kong X Q, Schmidt-Rohr K, Pignatello J J, Perdue E M. 2012. Advanced solid-state NMR characterization of marine dissolved organic matter isolated using the coupled reverse osmosis/electrodialysis method. Environ. Sci. Technol., 46 (11): 5806–5814.

    Article  Google Scholar 

  • Meyers P A. 1994. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem. Geol., 114 (3-4): 289–302.

    Article  Google Scholar 

  • Mopper K, Stubbins A, Ritchie J D, Bialk H M, Hatcher P G. 2007. Advanced instrumental approaches for characterization of marine dissolved organic matter: extraction techniques, mass spectrometry, and nuclear magnetic resonance spectroscopy. Chem. Rev., 107 (2): 419–442.

    Article  Google Scholar 

  • Nebbioso A, Piccolo A. 2013. Molecular characterization of dissolved organic matter (DOM): a critical review. Anal. Bioanal. Chem., 405 (1): 109–124.

    Article  Google Scholar 

  • Perdue E M, Benner R. 2009. Marine organic matter. In: Senesi N, Xing B S, Huang P M eds. Biophysico-Chemical Processes Involving Natural Nonliving Organic Matter in Environmental Systems. John Wiley & Sons, Hoboken, New Jersey. p.407–449.

    Chapter  Google Scholar 

  • Reemtsma T, These A, Springer A, Linscheid M. 2006. Fulvic acids as transition state of organic matter: indications from high resolution mass spectrometry. Environ. Sci. Technol., 40 (19): 5839–5845.

    Article  Google Scholar 

  • Simjouw J P, Minor E C, Mopper K. 2005. Isolation and characterization of estuarine dissolved organic matter: comparison of ultrafiltration and C18 solid-phase extraction techniques. Mar. Chem., 96 (3-4): 219–235.

    Article  Google Scholar 

  • Stevenson F J. 1994. Humus Chemistry: Genesis, Composition, Reactions. 2 nd edn. John Wiley & Sons, New York.

    Google Scholar 

  • Thurman E M, Malcolm R L. 1981. Preparative isolation of aquatic humic substances. Environ. Sci. Technol., 15 (4): 463–466.

    Article  Google Scholar 

  • Tremblay L, Alaoui G, Léger M N. 2011. Characterization of aquatic particles by direct FTIR analysis of filters and quantification of elemental and molecular compositions. Environ. Sci. Technol., 45 (22): 9671–9679.

    Article  Google Scholar 

  • Woods G C, Simpson M J, Kelleher B P, McCaul M, Kingery W L, Simpson A J. 2010. Online high-performance size exclusion chromatography-nuclear magnetic resonance for the characterization of dissolved organic matter. Environ. Sci. Technol., 44 (2): 624–630.

    Article  Google Scholar 

  • Xie L P, Wang Z L, Wang B D, Sun X, Sun P X. 2010. Distribution and controlled factor of dissolved organic carbon in Southern Yellow Sea in spring. Mar. Environ. Sci., 29 (5): 636–640. (in Chinese with English abstract)

    Google Scholar 

  • Yuan H M, Song J M, Li X G, Li N, Duan L Q, Qu B X, Lu X, Chen X. 2015. Distribution and impact factors of dissolved organic carbon in the Southern Yellow Sea and the Changjiang Estuary in summer. J. Guangxi Acad. Sci., 31 (3): 155–160. (in Chinese with English abstract)

    Google Scholar 

  • Zhang Y L, Du J Z, Ding X P, Zhang F F. 2016. Comparison study of sedimentary humic substances isolated from contrasting coastal marine environments by chemical and spectroscopic analysis. Environ. Earth Sci., 75 (5): 378.

    Article  Google Scholar 

  • Zhang Y L, Du J Z, Peng B, Zhang F F, Zhao X, Zhang J. 2013a. Chemical and spectroscopic characterization of dissolved humic substances in a mangrove-fringed estuary in the eastern coast of Hainan Island, China. Chin. J. Oceanol. Limnol., 31 (2): 454–463.

    Article  Google Scholar 

  • Zhang Y L, Du J Z, Zhang F F, Yu Y H, Zhang J. 2011. Chemical characterization of humic substances isolated from mangrove swamp sediments: the Qinglan area of Hainan Island, China. Estuar. Coast. Shelf Sci., 93 (3): 220–227.

    Article  Google Scholar 

  • Zhang Y L, Du J Z, Zhao X, Wu W S, Peng B, Zhang J. 2014. A multi-proxy study of sedimentary humic substances in the salt marsh of the Changjiang Estuary, China. Estuar. Coast. Shelf Sci., 151: 295–301.

    Article  Google Scholar 

  • Zhang Y L, Green N W, Perdue E M. 2013b. Acid-base properties of dissolved organic matter from pristine and oil-impacted marshes of Barataria Bay, Louisiana. Mar. Chem., 155: 42–49.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinzhou Du  (杜金洲).

Additional information

Supported by the National Natural Science Foundation of China (No. 41403108), the West Light Foundation of the Chinese Academy of Sciences (No. Y412011004), and the Natural Science Foundation of Qinghai Province (No. 2014-ZJ-937Q)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Yang, K., Du, J. et al. Chemical characterization of fractions of dissolved humic substances from a marginal sea—a case from the Southern Yellow Sea. J. Ocean. Limnol. 36, 238–248 (2018). https://doi.org/10.1007/s00343-017-6202-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-017-6202-6

Keyword

Navigation