Skip to main content
Log in

Interspecific competition and allelopathic interaction between Karenia mikimotoi and Dunaliella salina in laboratory culture

  • S2 Adaptation and Evolution to Special Environment of Coastal Zone
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Algal allelopathy is a manifold ecological/physiological phenomenon that is focused on chemical interactions and autotoxicity. We investigated the allelopathic interactions between Karenia mikimotoi and Dunaliella salina in laboratory cultures based on diff erent temperature (15°C, 20°C, and 25°C) and lighting (40, 80, and 160 μmol/(m2·s)) conditions. The growth of D. salina in bi-algae culture (1:1 size/density) was significantly restrained. The results of cell-free filtrate culture indicate that direct cell-tocell contact was not necessary in interspecific competition. Further experimental results demonstrated that allelochemicals released from K. mikimotoi were markedly influenced by both temperature (P =0.013) and irradiance (P =0.003), resulting in diff erent growth characteristics of D. salina in filtrate mediums. Compared with the plateau period, K. mikimotoi exudates in the exponential phase had a stronger short-term inhibition effect on D. salina in normal conditions. A clear concentration-dependent relationship was observed in the effect of allelochemicals released from K. mikimotoi with low-promoting and high-repressing effects on D. Salina in a short time-scale. In addition, allelopathic substances remain stable and effective under high temperature and pressure stress. Many flocculent sediments adhering with D. salina cells were observed in all filtrate mediums, while the quantity and color depended on the original culture conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antunes J T, Leão P N, Vasconcelos V M. 2012. Influence of biotic and abiotic factors on the allelopathic activity of the cyanobacterium Cylindrospermopsis raciborskii strain LEGE 99043. Microbial Ecology, 64 (3): 584–592, http://dx.doi.org/10.1007/s00248-012-0061-7.

    Article  Google Scholar 

  • Arzul G, Seguel M, Guzman L, Erard-Le Denn E. 1999. Comparison of allelopathic properties in three toxic Alexandrium species. Journal of Experimental Marine Biology and Ecology, 232 (2): 285–295, http://dx.doi. org/10.1016/S0022-0981(98)00120-8.

    Article  Google Scholar 

  • Brand L E, Campbell L, Bresnan E. 2012. Karenia: the biology and ecology of a toxic genus. Harmful Algae, 14: 156–178, http://dx.doi.org/10.1016/j.hal.2011.10.020.

    Article  Google Scholar 

  • Corcoran A A, Richardson B, Flewelling L J. 2014. Effects of nutrient-limiting supply ratios on toxin content of Karenia brevis grown in continuous culture. Harmful Algae, 39: 334–341, http://dx.doi.org/10.1016/j.hal.2014.08.009.

    Article  Google Scholar 

  • Dakshini K M M. 1994. Algal allelopathy. The Botanical Review, 60 (2): 182–196, http://dx.doi.org/10.1007/BF02856576.

    Article  Google Scholar 

  • Dang L X, Li Y, Liu F et al. 2015. Chemical response of the toxic dinoflagellate Karenia mikimotoi against grazing by three species of Zooplankton. Journal of Eukaryotic Microbiology, 62 (4): 470–480.

    Article  Google Scholar 

  • Davidson K, Miller P, Wilding T A, Shutler J, Bresnan E, Kennington K Swan S. 2009. A large and prolonged bloom of Karenia mikimotoi in Scottish waters i. 2006. Harmful Algae, 8 (2): 349–361, http://dx.doi.org/10.1016/j. hal.2008.07.007.

    Article  Google Scholar 

  • Fistarol G O, Legrand C, Granéli E. 2003. Allelopathic Effect of Prymnesium parvum on a natural plankton community. Marine Ecology: Progress Series, 255: 115–125, http://dx. doi.org/10.3354/meps255115.

    Article  Google Scholar 

  • Fistarol G O, Legrand C, Selander E, Hummert C, Stolte W, Granéli E. 2004. Allelopathy in Alexandrium spp.: Effect on a natural plankton community and on algal monocultures. Aquatic Microbial Ecology, 35 (1): 45–56, http://dx.doi.org/10.3354/ame035045.

    Article  Google Scholar 

  • Gentien P, Lunven M, Lazure P, Youenou A, Crassous M P. 2007. Motility and autotoxicity in Karenia mikimotoi (Dinophyceae). Philosophical Transactions of the Royal Society Lond B: Biological Sciences, 362 (1487): 1937–1946, http://dx.doi.org/1937-1946,10.1098/rstb.2007.2079.

    Article  Google Scholar 

  • Granéli E, Flynn K. 2006. Chemical and physical factors influencing toxin content. In: Granéli E, Turner J eds. Ecology of Harmful Algae. Springer, Berlin Heidelberg. p.229–241.

    Chapter  Google Scholar 

  • Granéli E, Johansson N. 2003. Increase in the production of allelopathic substances by Prymnesium parvum cells grown under N-or P-deficient conditions. Harmful Algae, 2 (2): 135–145, http://dx.doi.org/10.1016/S1568-9883(03)00006-4.

    Article  Google Scholar 

  • Granéli E, Weberg M, Salomon P S. 2008. Harmful algal blooms of allelopathic microalgal species: the role of eutrophication. Harmful Algae, 8 (1): 94–102, http://dx.doi.org/10.1016/j.hal.2008.08.011.

    Article  Google Scholar 

  • Guillard R R. 1975. Culture of phytoplankton for feeding marine invertebrates. In: Smith W L, Chanley M H eds. Culture of Marine Invertebrate Animals. Springer, US. p.29–60.

    Chapter  Google Scholar 

  • Ji X Q, Han X T, Zheng L et al. 2011. Allelopathic interactions between Prorocentrum micans and Skeletonema costatum or Karenia mikimotoi in laboratory cultures. Chinese Journal of Oceanology and Limnology, 29 (4): 840–848, http://dx.doi.org/10.1007/s00343-011-0512-x.

    Article  Google Scholar 

  • Kubanek J, Hicks M K, Naar J, Villareal T A. 2005. Does the red tide dinoflagellate Karenia brevis use allelopathy to outcompete other phytoplankton? Limnology and Oceanography, 50 (3): 883–895, http://dx.doi.org/10.4319/lo.2005.50.3.0883.

    Article  Google Scholar 

  • Lee S J, Jang M H, Kim H S, Yoon B D, Oh H M. 2000. Variation of microcystin content of Microcystis aeruginosa relative to medium N:P ratio and growth stage. Journal of Applied Microbiology, 89 (2): 323–329, http://dx.doi.org/10.1046/j.1365-2672.2000.01112.x.

    Article  Google Scholar 

  • Legrand C, Rengefors K, Fistarol G O, Granéli E. 2003. Allelopathy in phytoplankton-biochemical, ecological and evolutionary aspects. Phycologia, 42 (4): 406–419, http://dx.doi.org/10.2216/i0031-8884-42-4-406.1.

    Article  Google Scholar 

  • Li H. 2011. The Effect of allelopathy on the species competition between Skeletonema costatum and Prorocentrum donghaiiense. Ocean University of China, Qingdao, China. (in Chinese)

    Google Scholar 

  • Li J, Glibert P M, Zhou M et al. 2009. Relationships between nitrogen and phosphorus forms and ratios and the development of dinoflagellate blooms in the East China Sea. Marine Ecology Progress Series, 383: 11–26, http://dx.doi.org/10.3354/meps07975.

    Article  Google Scholar 

  • Marshall J A, Ross T, Pyecroft S, Hallegraeff G. 2005. Superoxide production by marine microalgae. Marine Biology, 147 (2): 541–549, http://dx.doi.org/10.1007/s00227-005-1597-6.

    Article  Google Scholar 

  • Monti M, Cecchin E. 2012. Comparative growth of three strains of Ostreopsis ovata at diff erent light intensities with focus on inter-specific allelopathic interactions. Cryptogamie Algologie, 33 (2): 113–119, http://dx.doi. org/10.7872/crya.v33.iss2.2011.113.

    Article  Google Scholar 

  • Mulderij G, Mooij W M, Smolders A J P, van Donk E. 2005. Allelopathic inhibition of phytoplankton by exudates from Stratiotes aloides. Aquatic Botany, 82 (4): 284–296, http://dx.doi.org/10.1016/j.aquabot.2005.04.001.

    Article  Google Scholar 

  • Nan C R, Zhang H Z, Lin S Z, Zhao G Q, Liu X Y. 2008. Allelopathic Effects of Ulva lactuca on selected species of harmful bloom-forming microalgae in laboratory cultures. Aquatic Botany, 89 (1): 9–15, http://dx.doi.org/10.1016/j.aquabot.2008.01.005.

    Article  Google Scholar 

  • Reigosa M J, Sánchez-Moreiras A, González L. 1999. Ecophysiological approach in allelopathy. Critical Reviews in Plant Sciences, 18 (5): 577–608, http://dx.doi. org/10.1080/07352689991309405.

    Article  Google Scholar 

  • Rice E L. 1984. Allelopathy. 2 nd edn. Academic Press, New York. 422p.

    Google Scholar 

  • Satake M, Shoji M, Oshima Y, Naoki H, Fujita T, Yasumoto T. 2002. Gymnocin-A, a cytotoxic polyether from the notorious red tide dinoflagellate, Gymnodinium mikimotoi. Tetrahedron letters, 43 (33): 5829–5832, http://dx.doi.org/10.1016/S0040-4039(02)01171-1.

    Article  Google Scholar 

  • Satake M, Tanaka Y, Ishikura Y, Oshima Y, Naoki H, Yasumoto T. 2005. Gymnocin-B with the largest contiguous polyether rings from the red tide dinoflagellate, Karenia (formerly Gymnodinium) mikimoto i. Tetrahedron Letters, 46 (20): 3537–3540, http://dx.doi.org/10.1016/j.tetlet.2005.03.115.

    Article  Google Scholar 

  • Silke J, O’Beirn F, Cronin M. 2005. Karenia mikimotoi: an exceptional dinoflagellate bloom in western Irish waters, summe. 2005. Marine Environment and Health Series, No. 21, http://hdl.handle.net/10793/240.

    Google Scholar 

  • Sivonen K. 1990. Effects of light, temperature, nitrate, orthophosphate, and bacteria on growth of and hepatotoxin production by Oscillatoria agardhii strains. Applied and Environmental Microbiology, 56 (9): 2658–2666.

    Google Scholar 

  • Suikkanen S, Fistarol G O, Granéli E. 2004. Allelopathic Effects of the Baltic cyanobacteria Nodularia spumdigena, Aphanizomenon flos-aquae and Anabaena lemmermannii on algal monocultures. Journal of Experimental Marine Biology and Ecology, 308 (1): 85–101, http://dx.doi.org/10.1016/j.jembe.2004.02.012.

    Article  Google Scholar 

  • Sukenik A, Eshkol R, Livne A, Hadas O, Rom M, Tchernov D, Vardi A, Kaplan A. 2002. Inhibition of growth and photosynthesis of the dinoflagellate Peridinium gatunense by Microcystis sp. (cyanobacteria): a novel allelopathic mechanism. Limnology and Oceanography, 47 (6): 1656–1663.

    Google Scholar 

  • Tapaswi P K, Mukhopadhyay A. 1999. Effects of environmental fluctuation on plankton allelopathy. Journal of Mathematical Biology, 39 (1): 39–58, http://dx.doi.org/10.1007/s002850050162.

    Article  Google Scholar 

  • Tatum N, Canobell L. 2006. A modified assay to determine hemolytic toxin variability among Karenia clones isolated from the Gulf of Mexico. Harmful Algae, 5 (5): 592–598, http://dx.doi.org/10.1016/j.hal.2005.11.006.

    Article  Google Scholar 

  • Thorel M, Fauchot J, Morelle J, Raimbault V, Le Roy B, Miossec C, Kientz-Bouchart V, Claquin P. 2014. Interactive Effects of irradiance and temperature on growth and domoic acid production of the toxic diatom Pseudo-nitzschia australis (Bacillariophyceae). Harmful Algae, 39: 232–241, http://dx.doi.org/10.1016/j.hal.2014.07.010.

    Article  Google Scholar 

  • Tillmann U, John U, Cembella A. 2007. On the allelochemical potency of the marine dinoflagellate Alexandrium ostenfeldii against heterotrophic and autotrophic protists. Journal of Plankton Research, 29 (6): 527–543, http://dx.doi.org/10.1093/plankt/fbm034.

    Article  Google Scholar 

  • Tong M M, Kulis D M, Fux E, Smith J L, Hess P, Zhou Q X, Anderson D M. 2011. The Effects of growth phase and light intensity on toxin production by Dinophysis acuminata from the northeastern United States. Harmful Algae, 10 (3): 254–264, http://dx.doi.org/10.1016/j.hal.2010.10.005.

    Article  Google Scholar 

  • Uchida T, Toda S, Matsuyama Y, et al. 1999. Interactions between the red tide dinoflagellates Heterocapsa circularisquama and Gymnodinium mikimotoi in laboratory culture. Journal of Experimental Marine Biology and Ecology, 241 (2): 285–299, http://dx.doi.org/10.1016/S0022-0981(99)00088-X.

    Article  Google Scholar 

  • Usup G, Kulis D M, Anderson D M. 1994. Growth and toxin production of the toxic dinoflagellate Pyrodinium bahamense var. compressum in laboratory cultures. Natural Toxins, 2 (5): 254–262, http://dx.doi.org/10.1002/nt.2620020503.

    Article  Google Scholar 

  • Wang J H, Wu J Y. 2009. Occurrence and potential risks of harmful algal blooms in the East China Sea. Science of the Total Environment, 407 (13): 4012–4021, http://dx.doi. org/10.1016/j.scitotenv.2009.02.040.

    Article  Google Scholar 

  • Wang Y, Tang X X. 2008. Interactions between Prorocentrum donghaiense Lu and Scrippsiella trochoidea (Stein) Loeblich III under laboratory culture. Harmful Algae, 7 (1): 65–75, http://dx.doi.org/10.1016/j.hal.2007.05.005.

    Article  Google Scholar 

  • Wang Y, Yu Z M, Song X X et al. 2006. Interactions between the bloom-forming dinoflagellates Prorocentrum donghaiense and Alexandrium tamarense in laboratory cultures. Journal of Sea Research, 56 (1): 17–26, http://dx.doi.org/10.1016/j.seares.2006.04.002.

    Article  Google Scholar 

  • Yamasaki Y, Shikata T, Nukata A, Ichiki S, Nagasoe S, Matsubara T, Shimasaki Y, Nakao M, Yamaguchi K, Oshima Y, Oda T, Jenkinson I R, Asakawa M, Honjo T. 2009. Extracellular polysaccharide-protein complexes of a harmful algal mediate the allelopathic control it exerts within the phytoplankton community. The ISME Journal, 3 (7): 808–817, http://dx.doi.org/10.1038/ismej.2009.24.

    Article  Google Scholar 

  • Yang C Y, Zhao N N, Xia C H, Liu S J, Zhou S W. 2001. Effects of Chattonella marina cell-free filtrate on bloom microalgae and co-culture of it and microalgae. Marine Environmental Science, 30 (6): 798–803. (in Chinese with English abstract)

    Google Scholar 

  • Yang Z B, Takayama H, Matsuoka K, Hodgkiss I J. 2000. Karenia digitata sp. nov. (Gymnodiniales, Dinophyceae), a new harmful algal bloom species from the coastal waters of west Japan and Hong Kong. Phycologia, 39 (6): 463–470, http://dx.doi.org/10.2216/i0031-8884-39-6-463.1.

    Google Scholar 

  • Yasumoto T, Underdal B, Aune T, Hormazabal V, Skulberg O M, Oshima Y. 1990). Screening for hemolytic and ichthyotoxic components of Chrysochromulina polylepis and Gyrodinium aureolum from Norwegian coastal waters. In: Granéli E, Sundström B, Edler L et al eds. Toxic Marine Phytoplankton; Fourth International Conference. Elsevier Science Publishing Co., Inc, New York, USA; Amsterdam, Netherlands. p.436–440.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuexi Tang  (唐学玺).

Additional information

Supported by the State Key Laboratory of Satellite Ocean Environment Dynamics (Second Institute of Oceanography, SOA) (No. SOED1418), the Public Science and Technology Research Funds Projects of Ocean (No. 201305027), the National Natural Science Foundation of China (No. 91128212), and the Research Fund for the Doctoral Program of Higher Education of China (No. 20110132120025)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, D., Liu, J., Hao, Q. et al. Interspecific competition and allelopathic interaction between Karenia mikimotoi and Dunaliella salina in laboratory culture. Chin. J. Ocean. Limnol. 34, 301–313 (2016). https://doi.org/10.1007/s00343-016-4320-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-016-4320-1

Keywords

Navigation