Skip to main content
Log in

Effects of a low-radiotoxicity uranium salt (uranyl acetate) on biochemical and hematological parameters of the catfish, Clarias gariepinus

  • Biology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Specimens of Clarias gariepinus were treated with lethal (70, 75, 80, 85, 90, and 95 mg/L) and sub-lethal concentrations (8, 12 and 16 mg/L) of uranyl acetate, a low-radiotoxicity uranium salt. The LC 50 value was registered as 81.45 mg/L. The protein and glycogen concentrations in liver and muscles were decreased in the fish exposed to sub-lethal concentrations. The red blood cell (RBC) and white blood cell (WBC) counts, haemoglobin (Hb) concentration and haematocrit (Hct) values were decreased. Different blood indices like mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH) and mean corpuscular haemoglobin concentration (MCHC) were negatively affected. Level of plasma glucose was elevated whereas protein was decreased. The level of calcium concentration (Ca) was declined in the blood of exposed fish whereas magnesium (Mg) remains unchanged. The activity level of glutamic-oxaloacetic transaminase (GOT) and glutamic-pyruvic transaminase (GPT) was elevated in exposed fish. These effects were more pronounced in the last period of exposure and in higher concentrations. Results of the present study indicate that uranyl acetate has adverse effects on Clarias gariepinus and causes changes in the biochemical and hematological parameters of the fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • [CCME] Canadian Council of Ministers of the Environment. 2011. Scientific Criteria Document for the Development of the Canadian Water Quality Guidelines for the Protection of Aquatic Life (Uranium). PN 1451. ISBN 978-1-896997-97-1 PDF. Pp-xiv+106.

    Google Scholar 

  • [FPTCDW] Federal-Provincial-Territorial Committee on Drinking Water. 2001. Guidelines for Canadian Drinking Water Quality: Supporting Document for Uranium. Health Canada, Ottawa (ON).

    Google Scholar 

  • [WWSA] World Wide Science Alliance. 2011. Uranyl Acetate: Topics by World Wide Science. Org. http:// worldwidescience.org/topicpages/u/uranyl+acetate.html.

    Google Scholar 

  • Abou-Donia M B, Dechkovskaia A M, Goldstein L B et al. 2002. Uranyl acetate-induced sensorimotor deficit and increased nitric oxide generation in the central nervous system in rats. Pharmacol. Biochem. Behav., 72 (4): 881–890.

    Article  Google Scholar 

  • Adeyemo O K. 2007. Haematological profile of Clarias gariepinus (Burchell, 1822) exposed to lead. Turk. J. Fish Aquat. Sci., 7 (2): 163–169.

    Google Scholar 

  • Agrahari S, Pandey K C, Gopal K. 2007. Biochemical alteration induced by monocrotophos in the blood plasma of fish, Channa punctatus (Bloch). Pest. Biochem. Physiol., 88 (3): 268–272.

    Article  Google Scholar 

  • Ahmad Z. 2012. Toxicity bioassay and effects of sub-lethal exposure of malathion on biochemical composition and haematological parameters of Clarias gariepinus. Afr. J. Biotech., 11 (34): 8 578–8 585.

    Google Scholar 

  • Ahmad Z. 2014. Biochemical and haematological changes induced by low-radiotoxicity uranium salt (Uranyl acetate) in Heteropneustes fossilis. J. Pure Appl. Micr., 8: 593–603.

    Google Scholar 

  • Al-Akel A S, Alkahem-Al-Balawi H F, Al-Misned F et al. 2010. Effects of dietary copper exposure on accumulation, growth, and hematological parameters in Cyprinus carpio. Toxicol. Environ. Chem., 92 (10): 1 865–1 878.

    Article  Google Scholar 

  • Al-Kahem H F. 1995. Behavioural responses and changes in some haematological parameters of the cichlid fish, Oreochromis niloticus, exposed to trivalent chromium. J. King Abdul. Aziz Univ. Sci., 7 (1): 5–13.

    Article  Google Scholar 

  • Alkahemal-Balawi H F, Ahmad Z, Al-Akel A S et al. 2011. Toxicity bioassay of lead acetate and effects of its sublethal exposure on growth, haematological parameters and reproduction in Clarias gariepinus. Afr. J. Biotech., 10 (53): 11 039–11 047.

    Google Scholar 

  • Amer N, Alwachi S N. 2012. Histological changes on the liver of the mothers treated with uranyl acetate in albino rats. Tikrit J. Pure Sci., 17 (4): 49–54.

    Google Scholar 

  • Ashman P U, Seed J R. 1973. Biochemical studies in the vole, Micritous montamus. I. The daily variation of hepatic-6-phosphatase and liver glycogen. Comp. Biochem. Physiol., 45: 365–378.

    Google Scholar 

  • Banaee M, Sureda A, Mirvaghefi A R, Ahmadi K. 2011. Effects of diazinon on biochemical parameters of blood in rainbow trout (Oncorhynchus mykiss). Pest. Biochem. Physiol., 99 (1): 1–6.

    Article  Google Scholar 

  • Barillet S, Adam C, Palluel O, Devaux A. 2007. Bioaccumulation, oxidative stress, and neurotoxicity in Danio rerio exposed to different isotopic compositions of uranium. Environ. Toxicol. Chem., 26 (3): 497–505.

    Article  Google Scholar 

  • Black J A, Roberts R F, Johnson D M et al. 1973. The significance of physicochemical variables in aquatic bioassays of heavy metals. In: Glass G E ed. Bioassay Techniques and Environmental Chemistry. Ann Arbor Science Publishers Inc., Ann Arbor, MI.

    Google Scholar 

  • Blaxhall P C, Daisley K W. 1973. Routine haematological methods for use with fish blood. J. Fish Biol., 5 (6): 771–781.

    Article  Google Scholar 

  • Bradbury S P, Symonic D M, Coats J R, Atchison G J. 1987. Toxicity of fenvalerate and its constituent isomers to the fathead minnow, Pi m ephales prome la s, and bluegill, Lepomis macrochirus. Bull. Environ. Cont. Toxicol., 38 (5): 727–735.

    Article  Google Scholar 

  • Bywater J F, Banaczykowski R, Baily M. 1991. Sensitivity to uranium of six species of tropical freshwater fishes and four species of cladocerans from northern Australia. Environ. Toxicol. Chem., 10 (11): 1 449–1 458.

    Article  Google Scholar 

  • Cambray R S, Bakins J D. 1980. Studies of Environmental Radioactivity in Cumbria: Part I. Concentration of Plutonium and Caesium 137 in Environmental Samples from West Cumbria and A Possible Maritime Effect. UK Atomic Energy Res. Establ. Harwell Rept. 15p.

    Google Scholar 

  • Cheng K L, Hogan A C, Parry D L et al. 2010. Uranium toxicity and speciation during chronic exposure to the tropical freshwater fish, Mogurnda mogurnda. Chemosphere, 79 (5): 547–554.

    Article  Google Scholar 

  • Cooley H M, Evans R E, Klaverkamp J F. 2000. Toxicology of dietary uranium in lake whitefish (Coregonus clupeaformis). Aquat. Toxicol., 48 (4): 495–515.

    Article  Google Scholar 

  • D’Ilio S, Violante N, Senofonte O, Petrucci F. 2007. Determination of depleted uranium in fish: validation of a confirmatory method by dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP-MS). Anal. Chem. Acta, 597 (2): 195–202.

    Article  Google Scholar 

  • Daraie B, Pourahmad J, Hamidi-Pour N et al. 2012. Uranyl acetate induces oxidative stress and mitochondrial membrane potential collapse in the human dermal fibroblast primary cells. Iran. J. Pharm. Res., 1 1 (2): 495–501.

    Google Scholar 

  • Darolles C, Broggio D, Feugier A et al. 2010. Different genotoxic profiles between depleted and enriched uranium. Toxicol. Lett., 192 (3): 337–348.

    Article  Google Scholar 

  • Domingo J L. 2001. Reproductive and developmental toxicity of natural and depleted uranium: a review. Repr. Toxicol., 15 (6): 603–609.

    Article  Google Scholar 

  • Farmer G J, Ashfield D, Samont H S. 1979. Effects of zinc on juvenile Atlantic salmon Salmo Salar: acute toxicity, food intake, growth and bioaccumulation. Environ. Pollut., 19 (2): 103–117.

    Article  Google Scholar 

  • Finney D J. 1971. Probit Analysis. 3 rd edn. Cambridge Press, New York.

    Google Scholar 

  • Gagnaire B, Bado-Nilles A, Sanchez W. 2014. Depleted uranium disturbs immune parameters in zebra fish, Danio rerio: an ex vivo/ in vivo experiment. Arch. Environ. Contam. Toxicol., 67 (3): 426–435.

    Article  Google Scholar 

  • Gilman A P, Villeneuve D C, Secours V E et al. 1998. Uranyl nitrate: 28 day and 91-day toxicity studies in the Sprague-Dawley rat. Toxicol. Sci., 41 (1): 117–128.

    Google Scholar 

  • Goldman M, Yaari A, Doshnitzki Z et al. 2006. Nephrotoxicity of uranyl acetate: effect on rat kidney brush border membrane vesicles. Arch. Toxicol., 80 (7): 387–393.

    Article  Google Scholar 

  • Goulet R R, Fortin C, Spry D J. 2011. Uranium. In: Wood C M, Farrell A P, Brauner C J eds. Fish Physiology (Homeostasis and Toxicology of Non-Essential Metals). Elsevier Inc. 31, p.391–428.

    Article  Google Scholar 

  • Guéguen Y, Souidi M, Baudelin C et al. 2006. Short-term hepatic effects of depleted uranium on xenobiotic and bile acid metabolizing cytochrome P450 enzymes in the rat. Arch. Toxicol., 80 (4): 187–195.

    Article  Google Scholar 

  • Hamilton E I. 1980. Concentration and distribution of Uranium in Mytilus edulis and associated materials. Mar. Ecol. Prog. Ser., 2: 61–73.

    Article  Google Scholar 

  • Hamilton S J. 1995. Hazard assessment of inorganics to three endangered fish in the Green River, Utah. Ecotoxicol. Environ. Safety, 30 (2): 134–142.

    Article  Google Scholar 

  • Hartsock W J, Cohen J D, Segal D J. 2007. Uranyl acetate as a direct inhibitor of DNA-binding proteins. Chem. Res. Toxicol., 20 (5): 784–789.

    Article  Google Scholar 

  • Hinck J E, Linder G, Finger S et al. 2010. Biological pathways of exposure and ecotoxicity values for uranium and associated radionuclides. In: Alpine E A ed. Hydrological, Geological and Biological Site Characterization of Breccia Pipe Uranium Deposits in Northern Arizona. U. S. Geological Survey, Scientific Investigations Report 2010-5025. 354p.

    Google Scholar 

  • Jaffer Ali H A, Rani V J. 2009. Effect of phosalone on haematological indices in the tilapia, Oreochromis mossambicus. Turk. J. Vet. Anim. Sci., 33 (5): 407–411.

    Google Scholar 

  • Jeney G, Nemcsok J, Jeney Z S, Olah J. 1991. Acute effect of sublethal ammonia concentrations on common carp (Cyprinus carpio L.). II. Effect of ammonia on blood plasma transaminases (GOT, GPT), G1DH enzyme activity, and ATP value. Aquaculture, 104 (1-2): 149–156.

    Google Scholar 

  • Johnson C M, Toledo M C F. 1993. Acute toxicity of endosulfan to the fish Hyphessobrycon bifasciatus and Brachydanio rerio. Archiv. Environ. Conta. Toxicol., 24 (2): 151–155.

    Article  Google Scholar 

  • Khangarot B S. 1991. Toxicity of metals to a freshwater tubificid worm, Tubifex tubifex (Muller). Bull. Environ. Contam. Toxicol., 46 (6): 906–912.

    Article  Google Scholar 

  • Lowry O H, Rosebrough N J, Farr A L, Randall R J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193: 265–275.

    Google Scholar 

  • Mazeaud M M, Mazeaud F, Donaldson E M. 1977. Primary and secondary effects of stress in fish: some new data with a general review. Trans. Am. Fish. Soc., 106 (3): 201–212.

    Article  Google Scholar 

  • McKim J M, Christensen G M, Hunt E P. 1970. Changes in the blood of brook Trout (Salvelinus fontinalis) after shortterm and long-term exposure to copper. Can. J. Fish. Res. Board, 27 (10): 1 883–1 889.

    Article  Google Scholar 

  • McKim J M. 1985. Early life stage toxicity tests. In: Rand G M, Petrocelli S R eds. Fundamentals of Aquatic Toxicology. Hemisphere Publishing, Washington DC. p.58–86.

    Google Scholar 

  • Montgomery R. 1957. Determination of glycogen. Arch. Biochem. Biophys., 67 (2): 378–386.

    Article  Google Scholar 

  • Mousa M M A, El-Ashram A M M, Hamed M. 2008. Effects of Neem leaf extract on freshwater fishes and zooplankton community. In: 8 th International Symposium on Tilapia in Aquaculture. The Central Laboratory for Aquaculture Research, Cairo, Egypt. Oct. p.12–14.

    Google Scholar 

  • Mulcahy M F. 1975. Fish blood changes associated with disease: a hematological study of pike lymphoma and salmon ulcerative dermal necrosis. In: Ribelin W E, Migaki Madison K eds. The Pathology of Fishes. University of Wisconsin Press, Madison. p.925–944.

    Google Scholar 

  • Murty A S. 1986. Toxicity of Pesticides to Fish. CRC Press Inc Boca Raton, FL. 143p.

    Google Scholar 

  • Nelson D L, Cox M M. 2000. Lehninger Principles of Biochemistry. 3 rd edn. Worth Publishers, New York.

    Google Scholar 

  • Nikolsky G V. 1963. The Ecology of Fishes. Academic Press, London, New York.

    Google Scholar 

  • Omoniyi I, Agbon A O, Sodunke S A. 2002. Effect of lethal and sub-lethal concentrations of Tobacco (Nicotiana tobaccum) leaf dust extract on weight and hematological changes in Clarias gariepinus (Burchell). J. Appl. Sci. Environ. Manag., 6 (2): 37–42.

    Google Scholar 

  • Ozmen M, Yurekli M. 1998. Subacute toxicity of uranyl acetate in Swiss-Albino mice. Environ. Toxicol. Pharmacol., 6 (2): 111–115.

    Article  Google Scholar 

  • Palanivelu P, Vijayavel K, Balasubramanian S E, Balasubramanian M P. 2005. Influence of insecticidal derivative (cartap hydrochloride) from the marine polycheate on certain enzyme systems of the fresh water fish Oreochromis mossambicus. J. Environ. Biol., 26 (2): 191–195.

    Google Scholar 

  • Parkhurst B R, Elder R G, Meyer J S et al. 1984. An environmental hazard evaluation of uranium in a rocky mountain stream. Environ. Toxicol. Chem., 3 (1): 113–124.

    Article  Google Scholar 

  • Periyakaruppan A, Kumar F, Sarkar S et al. 2007. Uranium induces oxidative stress in lung epithelial cells. Arch Toxicol., 81 (6): 389–395.

    Article  Google Scholar 

  • Priyamvada P, Khan S A, Khan M W et al. 2010. Studies on the protective effect of dietary fish oil on uranyl-nitrateinduced nephrotoxicity and oxidative damage in rat kidney. Prostagl. Leukotr. Essent. Fatty Acids, 82 (1): 35–44.

    Article  Google Scholar 

  • Rao D S. 2010. Carbaryl Induced Changes in the Haematological, Serum Biochemical and Immunological Responses of Common Carp, Cyprinus carpio, (L.) with Special Emphasis on Herbal Extracts as Immunomodulators. Ph. D. Thesis, Andhra University, India. 235p.

    Google Scholar 

  • Rice T R, Baptist J P, Price T J. 1965. Accumulation of mixed fishes. products by marine organisms. In: Pearson E A ed. Advances in Water Pollution Research. Pergamon Press, New York, Frankfurt-am-Main.

    Google Scholar 

  • Roche H, Bogé G. 1996. Fish blood parameters as a potential tool for identification of stress caused by environmental factors and chemical intoxication. Mar. Environ. Res., 41 (1): 27–43.

    Article  Google Scholar 

  • Salah El-Deen M A, Sharada H I, Abu-El-Ella S M. 1996. Some metabolic alteration in grass carp (Ctenopharyngodon idella) induced by exposure to cadmium. J. Egypt. Ger. Soc. Zool., 21: 441–457.

    Google Scholar 

  • Schaedler C B. 1981. Stress and compensation in teleostean fishes: response to social and physical factors. In: Pickering A D ed. Stress and Fish. Academic Press, New York, USA. p.295–322.

    Google Scholar 

  • Shekhanova I A. 1980. Radiological aspects of surface water protection under condition of peaceful uses of nuclear energy. In: Enko A I ed. Problems of Animal Ecology. Nauka Publication, USSR.

    Google Scholar 

  • Simon O, Floc’h E, Geffroy B, Frelon S. 2014. Exploring ecotoxicological fish bioassay for the evaluation of uranium reprotoxicity. Environ. Toxicol. Chem., 33 (8): 1 817–1 824.

    Article  Google Scholar 

  • Skidmore J F. 1965. Resistance to zinc sulphate of the zebra fish (Brachydani o rerio, Hamilton-Buchanan) at different phases of its life history. Ann. Appl. Biol., 56 (1): 47–53.

    Article  Google Scholar 

  • Stearns D M, Yazzie M, Bradley A S et al. 2005. Uranyl acetate induces hprt mutations and uranium-DNA adducts in Chinese hamster ovary EM9 cells. Mutag enesis, 20 (6): 417–423.

    Article  Google Scholar 

  • Strange R J, Schreck C B, Golden J T. 1977. Corticoid stress responses to handling and temperature in salmonids. Trans. Am. Fish. Soc., 106 (3): 213–218.

    Article  Google Scholar 

  • Van Vuren J H J. 1986. The effects of toxicants on the haematology of Labeo umbratus (Teleostei: Cyprinidae). Comp. Biochem. Physiol. C: Comp. Pharm., 8 3 (1): 155–159.

    Article  Google Scholar 

  • Vicente-Vicente L, Quiros Y, Pérez-Barriocanal F et al. 2010. Nephrotoxicity of uranium: pathophysiological, diagnostic and therapeutic perspectives. Toxicol. Sci., 118 (2): 324–347.

    Article  Google Scholar 

  • Webb J N, Levy H B. 1955. A sensitive method for the determination of deoxyribonucleic acid in tissues and microorganisms. J. Biol. Chem., 213 (1): 107–117.

    Google Scholar 

  • Winkaler E U, Santosh T R M, Machdo-Neto J G et al. 2007. Acute lethal and sub-lethal effects of neem leaf extract on the neotropical freshwater fish Prochilodus lineatus. Comp. Biochem. Physiol. C: Toxicol. Pharm., 145 (2): 236–244.

    Google Scholar 

  • Yazzie M, Gamble S L, Civitello E R, Stearn D M. 2003. Uranyl acetate causes DNA single strand breaks in vitro in the presence of ascorbate (vitamin C). Chem. Res. Toxicol., 16 (4): 524–530.

    Article  Google Scholar 

  • Zaki M S, Mostafa S O, Nasr S et al. 2009. Biochemical, clinicophathlogical and microbial changes in Clarias gariepinus exposed to pesticide malathion and climate changes. Rep. Opn., 6–11.

    Google Scholar 

  • Zymmerman K L, Barber D S, Ehrich M F et al. 2007. Temporal clinical chemistry and microscopic renal effects following acute uranyl acetate exposure. Toxicol. Path., 35 (7): 1 000–1 009.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zubair Ahmad.

Additional information

Supported by the Deanship of Scientific Research at King Saud University (No. PRG-1436-011)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Ghanim, K.A., Ahmad, Z., Al-Kahem Al-Balawi, H.F. et al. Effects of a low-radiotoxicity uranium salt (uranyl acetate) on biochemical and hematological parameters of the catfish, Clarias gariepinus . Chin. J. Ocean. Limnol. 34, 109–117 (2016). https://doi.org/10.1007/s00343-015-4392-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-015-4392-3

Keywords

Navigation