Skip to main content
Log in

Evaluation and improvement of wastewater treatment plant performance using BioWin

  • Biology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

In this study, the activated sludge model implemented in the BioWin® software was validated against full-scale wastewater treatment plant data. Only two stoichiometric parameters (Y p/acetic and the heterotrophic yield (Y H)) required calibration. The value 0.42 was used for Y p/acetic in this study, while the default value of the BioWin® software is 0.49, making it comparable with the default values of the corresponding parameter (yield of phosphorus release to substrate uptake \((Y_{PO_4 } )\)) used in ASM2, ASM2d, and ASM3P, respectively. Three scenarios were evaluated to improve the performance of the wastewater treatment plant, the possibility of wasting sludge from either the aeration tank or the secondary clarifier, the construction of a new oxidation ditch, and the construction of an equalization tank. The results suggest that construction of a new oxidation ditch or an equalization tank for the wastewater treatment plant is not necessary. However, sludge should be wasted from the aeration tank during wet weather to reduce the solids loading of the clarifiers and avoid effluent violations. Therefore, it is recommended that the design of wastewater treatment plants (WWTPs) should include flexibility to operate the plants in various modes. This is helpful in selection of the appropriate operating mode when necessary, resulting in substantial reductions in operating costs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • APHA. 1998. Standard Methods for the Examination of Water and Wastewater, 20th edn, American Public Health, Washington DC, USA.

    Google Scholar 

  • Barker P S, Dold P L. 1997. General model for biological nutrients removal activated-sludge systems: model presentation. Water Environ. Res., 69(5): 969–984, http://dx.doi.org/10.2175/106143097X125669.

    Article  Google Scholar 

  • EnviroSim Associates Ltd. 2008. User Manual for BioWin v.3.0, EnviroSim Associates Ltd., Hamilton, Canada.

    Google Scholar 

  • Ferrer J, Seco A, Serralta J, Ribes J, Manga J, Asensi E, Morenilla J J, Llavador F. 2008. DESASS: a software tool for designing, simulating and optimising WWTPs. Environ Modell Softw., 23(1): 19–26, http://dx.doi.org/10.1016/j.envsoft.2007.04.005.

    Article  Google Scholar 

  • Gernaey K V, Loosdrecht M C M, Henze M, Lind M, Jorgensen S B. 2004. Activated sludge wastewater treatment plant modelling and simulation: state of the art. Environ. Modell. Softw., 19(9): 763–783, http://dx.doi.org/10.1016/j.envsoft.2003.03.005.

    Article  Google Scholar 

  • Henze M, Guje W, Mino T, Matsuo T, Loosdrech M V. 2002. Activated sludge models ASM1, ASM2, ASM2d and ASM3. IWA Scientific and Technical Report No.9, London, UK. p.45–102.

    Google Scholar 

  • Hulsbeek J J W, Kruit J, Roeleveld P J, van Loosdrecht M C M. 2002. A practical protocol for dynamic modelling of activated sludge systems. Water Sci. Technol., 45(6): 127–136.

    Google Scholar 

  • Langergraber G, Rieger L, Winkler S, Alex J, Wiese J, Owerdieck C, Ahnert A, Simon J, Maurer M. 2004. A guideline for simulation studies of wastewater treatment plants. Water Sci. Technol., 50(7): 131–138.

    Google Scholar 

  • Liwarska-Bizukojc E, Biernacki R. 2010. Identification of the most sensitive parameters in the activated sludge model implemented in BioWin software. Bioresour. Technol., 101(19): 7 278–7 285, http://dx.doi.org/10.1016/j.biortech.2010.04.065.

    Article  Google Scholar 

  • Liwarska-Bizukojc E, Olejnik D, Biernacki R, Ledakowicz S. 2013. Improving the operation of a full-scale wastewater treatment Plant with use of a complex activated sludge model. Environ. Prot. Eng., 39: 659–670, http://dx.doi.org/10.5277/EPE130114.

    Google Scholar 

  • Mamais D, Jenkins D, Pitt P. 1993. A rapid physical-chemical method for the determination for readily biodegradable soluble COD in municipal Wastewater. Water Res., 27(1): 195–197, http://dx.doi.org/10.1016/0043-1354(93)90211-y.

    Article  Google Scholar 

  • Meijer S C F, van der Spoel H, Susanti S, Heijnen J J, van Loosdrecht M C M. 2002. Error diagnostics and data reconciliation for activated sludge modelling using mass balances. Water Sci. and Technol., 45(6): 145–156.

    Google Scholar 

  • Meijer SCF, van Loosdrecht MCM, Heijnen J J. 2001. Metabolic modelling of full-scale biological nitrogen and phosphorus removing WWTP’s. Water Res., 35(11): 2 711–2 723, http://dx.doi.org/10.1016/S0043-1354(00)00567-4.

    Article  Google Scholar 

  • Melcer H, Dold P L, Jones R M, Bye C M, Takacs I, Stensel H D, Wilson A W, Sun P, Bury S. 2003. Methods for wastewater characterization in activated sludge modelling. Report No. 99-WWF-3 Water Environment Research Foundation (WERF), Alexandria, VA. USA.

    Google Scholar 

  • Petersen B, Gernaey K V, Henze M, Vanrolleghem P A. 2002. Evaluation of an ASM1 model calibration procedure on a municipal-industrial wastewater treatment Plant. J. Hydroinform., 4: 15–38.

    Google Scholar 

  • Puig S, van Loosdrecht M C M, Colprim J, Meijer S C F. 2008. Data evaluation of full-scale wastewater treatment plants by mass balance. Water Res., 42(18): 4 645–4 655, http://dx.doi.org/10.1016/j.watres.2008.08.009.

    Article  Google Scholar 

  • Rieger L, Vanrolleghem P A, Takács I, Johnson B R. 2008. Wastewater Treatment Modelling, Quo Vadis? Water 21, IWA Publishing, London, UK. p.59–60.

    Google Scholar 

  • Rieger L, Koch G, Kuhni M, Gujer W, Siegrist H. 2001. The EAWAG BIO-P Module for activated sludge model No.3. Water Res., 35(16): 3 887–3 903.

    Article  Google Scholar 

  • Russel B M, Henriksen J P, Jorgensen S B, Gani R. 2002. Integration of design and control through model analysis. Comput. Chem. Eng., 26(2): 213–225, http://dx.doi.org/10.1016/S0098-1354(01)00742-6.

    Article  Google Scholar 

  • Sin G, De Pauw D J W, Weijers S, Vanrolleghem P A. 2008. An efficient approach to automate the manual trial and error calibration of activated sludge models. Biotechnol. Bioeng., 100(3): 516–528, http://dx.doi.org/10.1002/bit.21769.

    Article  Google Scholar 

  • STOWA. 1996. Methods for influent characterization: inventory and guidelines. Report STOWA 96-08. Utrecht, The Netherlands. (in Dutch)

    Google Scholar 

  • Thomann M. 2008. Quality evaluation methods for wastewater treatment plant data. Water Sci. Technol., 57(10): 1 601–1 609, http://dx.doi.org/10.2166/wst.2008.151.

    Article  Google Scholar 

  • Vanrolleghem P A. 2001. Model Simulation for Improved Operation and Control of Wastewater Treatment Plants. BIOMATH. Department for Applied Mathematics, Biometrics and Process Control Ghent University, Coupure Links 653, B-9000 Gent, Belgium. http://biomath.rug.ac.be/~peter.

    Google Scholar 

  • Water Environment Federation (WEF). 2010. Nutrient Removal—A Manual of Practice No. 34, McGraw-Hill, New York, Water Environment Federation, Alexandra, VA22314-1994 USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oloche James Oleyiblo.

Additional information

Supported by the College of Scientific Innovation Significant Cultivation Fund Financing Projects (No. 708047) and the Key Special Program for Pollution Control (No. 2012ZX07101-003)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oleyiblo, O.J., Cao, J., Feng, Q. et al. Evaluation and improvement of wastewater treatment plant performance using BioWin. Chin. J. Ocean. Limnol. 33, 468–476 (2015). https://doi.org/10.1007/s00343-015-4108-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-015-4108-8

Keyword

Navigation