Skip to main content
Log in

Dressed photon-excitons in a Fabry–Pérot cavity filled with a nonlinear semiconductor

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The dressed photon-exciton in a two-dimensional optical microcavity is studied within the framework of quantum field theory. Our experimental scheme utilizes a planar Fabry–Pérot cavity filled with a nonlinear semiconductor. The Fabry–Pérot cavity provides an effective mass for a photon, making the system formally equivalent to a two-dimensional gas of free, massive bosons. The incident photons interact with the transverse excitons in the semiconductor and hence are converted into new quasiparticles, which we refer to as dressed photon–excitons. A dressed photon–exciton is a photon dressed with a cloud of virtual transverse excitons. One of the most important properties of dressed photon–exciton is an increased inert mass. Owing to the effect of dressed photon–excitons, we find that the photon–photon interaction is enhanced greatly. The dressed photon–exciton is a quantum effect of cavity nonlinear optics and an optical analogue of the polaron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. J.J. Hopfield, Phys. Rev. 112, 1555 (1958)

    Article  ADS  Google Scholar 

  2. C.H. Henry, J.J. Hopfield, Phys. Rev. Lett. 15, 964 (1965)

    Article  ADS  Google Scholar 

  3. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J.M.J. Keeling, F.M. Marchetti, M.H. Szymańska, R. André, J.L. Staehli, V. Savona, P.B. Littlewood, B. Deveaud, L.S. Dang, Nature (London) 443, 409 (2006)

    Article  ADS  Google Scholar 

  4. R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, K. West, Science 316, 1007 (2007)

    Article  ADS  Google Scholar 

  5. L. Landau, S. Pekar, J. Exp. Theoret. Phys. 18, 419 (1948)

    Google Scholar 

  6. T. Ye, C. Wang, Q.H. Chen, Phys. Rev. A 104, 053708 (2021)

    Article  ADS  Google Scholar 

  7. L. Leonforte, A. Carollo, F. Ciccarello, Phys. Rev. Lett. 126, 063601 (2021)

    Article  ADS  Google Scholar 

  8. P. Gartner, V. Moldoveanu, Phys. Rev. A 105, 023704 (2022)

    Article  ADS  Google Scholar 

  9. M. Arkhipov, R. Arkhipov, I. Babushkin, N. Rosanov, Phys. Rev. Lett. 128, 203901 (2022)

    Article  ADS  Google Scholar 

  10. R.Y. Chiao, J. Boyce, Phys. Rev. A 60, 4114 (1999)

    Article  ADS  Google Scholar 

  11. R.Y. Chiao, Opt. Commun. 179, 157 (2000)

    Article  ADS  Google Scholar 

  12. E.L. Bolda, R.Y. Chiao, W.H. Zurek, Phys. Rev. Lett. 86, 416 (2001)

    Article  ADS  Google Scholar 

  13. J. Klaers, F. Vewinger, M. Weitz, Nat. Phys. 6, 512 (2010)

    Article  Google Scholar 

  14. J. Klaers, J. Schmitt, F. Vewinger, M. Weitz, Nature (London) 468, 545 (2010)

    Article  ADS  Google Scholar 

  15. J. Klaers, J. Schmitt, T. Damm, F. Vewinger, M. Weitz, Phys. Rev. Lett. 108, 160403 (2012)

    Article  ADS  Google Scholar 

  16. S. Giovanazzi, D. O’Dell, G. Kurizki, Phys. Rev. Lett. 88, 130402 (2002)

    Article  ADS  Google Scholar 

  17. D.H.J. O’Dell, S. Giovanazzi, G. Kurizki, Phys. Rev. Lett. 90, 110402 (2003)

    Article  ADS  Google Scholar 

  18. A. Di Piazza, C. Müller, K.Z. Hatsagortsyan, C.H. Keitel, Rev. Mod. Phys. 84, 1177 (2012)

    Article  ADS  Google Scholar 

  19. H. Seok, L.F. Buchmann, S. Singh, P. Meystre, Phys. Rev. A 86, 063829 (2012)

    Article  ADS  Google Scholar 

  20. H. Mabuchi, Phys. Rev. A 85, 015806 (2012)

    Article  ADS  Google Scholar 

  21. R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, H. Weinfurter, Nat. Photon. 4, 170 (2010)

    Article  ADS  Google Scholar 

  22. P. Mandel, Theoretical Problems in Cavity Nonlinear Optics (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  23. Z. Cheng, S.W. Gu, Phys. Rev. B 41, 3128 (1990)

    Article  ADS  Google Scholar 

  24. M. Lang, Phys. Rev. B 2, 4022 (1970)

    Article  ADS  Google Scholar 

  25. H. Haken, Quantum Field Theory of Solids: An Introduction (North Holland Publ. Co., Amsterdam, 1976), p. 157

    Google Scholar 

  26. O. Madelung, Introduction to Solid-State Theory (Springer, Berlin, 1978), p. 127

    Book  Google Scholar 

  27. J.D. Jackson, Classical Electrodynamics, 2nd edn. (Wiley, New York, 1975), p. 356

    MATH  Google Scholar 

  28. H. Fröhlich, Adv. Phys. 3, 325 (1954)

    Article  ADS  Google Scholar 

  29. T.D. Lee, F.E. Low, D. Pines, Phys. Rev. 90, 297 (1953)

    Article  ADS  MathSciNet  Google Scholar 

  30. R.G. Ulbrich, G.W. Fehrenbach, Phys. Rev. Lett 43, 963 (1979)

    Article  ADS  Google Scholar 

  31. C.J. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Gases (Cambridge University Press, Cambridge, 2008)

    Book  Google Scholar 

  32. L. Pitaevskii, Sandro Stringari, Bose-Einstein Condensation (Oxford University Press, Oxford, 2003)

    MATH  Google Scholar 

  33. Ze. Cheng, Europhys. Lett. 101, 14003 (2013)

    Article  ADS  Google Scholar 

  34. Ze. Cheng, Phys. Rev. A 87, 053825 (2013)

    Article  ADS  Google Scholar 

  35. Ze. Cheng, Int. J. Mod. Phys. B 33, 1950265 (2019)

    Article  ADS  Google Scholar 

  36. M. Ohtsu, Dressed Photon (Spring-Verlag, Berlin, 2014)

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grants No. 10174024 and No. 10474025.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ze Cheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Z. Dressed photon-excitons in a Fabry–Pérot cavity filled with a nonlinear semiconductor. Appl. Phys. B 128, 130 (2022). https://doi.org/10.1007/s00340-022-07851-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-022-07851-6

Navigation