Skip to main content
Log in

Mahan polaritons and their lifetime due to hole recoil

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We present a theoretical study on polaritons in doped semiconductor microcavities, focussing on a cavity mode that is resonant with the Fermi edge. In agreement with experimental results, the strong light-matter coupling is maintained under very high doping within our ladder diagram approximation. In particular, we find that the polaritons result from the strong admixing of the cavity mode with the Mahan exciton. The upper Mahan polariton, lying in the electron-hole continuum, always remains visible and has a linewidth due to free interband electron-hole creation. The lower Mahan polariton acquires a finite lifetime due to relaxation of the valence band hole if the electron density exceeds a certain critical value. However, if the Rabi splitting exceeds the inverse hole recoil time, the lower polariton lifetime is only limited by the cavity properties.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Carusotto, C. Ciuti, Rev. Mod. Phys. 85, 299 (2013)

    Article  ADS  Google Scholar 

  2. D. Tanese, H. Flayac, D. Solnyshkov, A. Amo, A. Lemaître, E. Galopin, R. Braive, P. Senellart, I. Sagnes, G. Malpuech, J. Bloch, Nat. Commun. 4, 1749 (2013)

    Article  ADS  Google Scholar 

  3. R. Balili, B. Nelsen, D.W. Snoke, R.H. Reid, L. Pfeiffer, K. West, Phys. Rev. B 81, 125311 (2010)

    Article  ADS  Google Scholar 

  4. R. Rapaport, R. Harel, E. Cohen, Arza Ron, E. Linder, L.N. Pfeiffer, Phys. Rev. Lett. 84, 1607 (2000)

    Article  ADS  Google Scholar 

  5. D. Bajoni, M. Perrin, P. Senellart, A. Lemaître, B. Sermage, J. Bloch, Phys. Rev. B 73, 205344 (2006)

    Article  ADS  Google Scholar 

  6. A. Gabbay, Y. Preezant, E. Cohen, B.M. Ashkinadze, L.N. Pfeiffer, Phys. Rev. Lett. 99, 157402 (2007)

    Article  ADS  Google Scholar 

  7. S. Smolka, W. Wuester, F. Haupt, S. Faelt, W. Wegscheider, A. Imamoglu, Science 346, 332 (2014)

    Article  ADS  Google Scholar 

  8. F.P. Laussy, A.V. Kavokin, I.A. Shelykh, Phys. Rev. Lett. 104, 106402 (2010)

    Article  ADS  Google Scholar 

  9. P.G. Lagoudakis, M.D. Martin, J.J. Baumberg, A. Qarry, E. Cohen, L.N. Pfeiffer, Phys. Rev. Lett. 90, 206401 (2003)

    Article  ADS  Google Scholar 

  10. M. Perrin, P. Senellart, A. Lemaître, J. Bloch, Phys. Rev. B 72, 075340 (2005)

    Article  ADS  Google Scholar 

  11. A. Das, B. Xiao, S. Bhowmick, P. Bhattacharya, Appl. Phys. Lett. 101, 131112 (2012)

    Article  ADS  Google Scholar 

  12. G. Malpuech, A. Kavokin, A. Di Carlo, J.J. Baumberg, Phys. Rev. B 65, 153310 (2002)

    Article  ADS  Google Scholar 

  13. N.S. Averkiev, M.M. Glazov, Phys. Rev. B 76, 045320 (2007)

    Article  ADS  Google Scholar 

  14. N.S. Averkiev, M.M. Glazov, M.M. Voronov, Solid. State. Commun. 152, 395 (2012)

    Article  ADS  Google Scholar 

  15. G.D. Mahan, Phys. Rev. 163, 612 (1967)

    Article  ADS  Google Scholar 

  16. P. Nozières, C.T. De Dominicis, Phys. Rev. 178, 1097 (1969)

    Article  ADS  Google Scholar 

  17. M. Combescot, P. Nozières, J. Phys. 32, 913 (1971)

    Article  Google Scholar 

  18. P. Anderson, Phys. Rev. Lett. 18, 1049 (1967)

    Article  ADS  Google Scholar 

  19. M. Knap, A. Shashi, Y. Nishida, A. Imambekov, D.A. Abanin, E. Demler, Phys. Rev. X 2, 041020 (2012)

    Google Scholar 

  20. G. Refael, E. Demler, Phys. Rev. B 77, 144511 (2008)

    Article  ADS  Google Scholar 

  21. A. Schirotzek, C.H. Wu, A. Sommer, M.W. Zwierlein, Phys. Rev. Lett. 102, 230402 (2009)

    Article  ADS  Google Scholar 

  22. D.A. Kleinman, Phys. Rev. B 32, 3766 (1985)

    Article  ADS  Google Scholar 

  23. D. Kulakovskii, S. Gubarev, Yu. Lozovik, J. Exp. Theor. Phys. Lett. 74, 118 (2001)

    Article  Google Scholar 

  24. G.D. Mahan, Many-Particle Physics (Kluwer Academic/Plenum Publishers, New York, 2000)

  25. M. Baeten, M. Wouters, Phys. Rev. B 89, 245301 (2014)

    Article  ADS  Google Scholar 

  26. P. Hawrylak, Phys. Rev. B 44, 3821 (1991)

    Article  ADS  Google Scholar 

  27. F. Stern, Phys. Rev. Lett. 18, 546 (1967)

    Article  ADS  Google Scholar 

  28. D.S. Citrin, J.B. Khurgin, Phys. Rev. B 68, 205325 (2003)

    Article  ADS  Google Scholar 

  29. K. Chadan, N.N. Khuri, A. Martin, T.T. Wu, J. Math. Phys. 44, 406 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. K. Yang, M. de Llano, Am. J. Phys. 57, 85 (1989)

    Article  ADS  Google Scholar 

  31. S. Schmitt-Rink, C. Ell, H. Haug, Phys. Rev. B 33, 1183 (1986)

    Article  ADS  Google Scholar 

  32. H. Haug, S.W. Koch, in Quantum Theory of the Optical and Electronic Properties of Semiconductors, edited by J.T. Devreese, 4 edn. (Kluwer Academic/Plenum Publishers, 2000)

  33. D. Bajoni, P. Senellart, A. Lemaître, J. Bloch, Phys. Rev. B 76, 201305(R) (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maarten Baeten.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baeten, M., Wouters, M. Mahan polaritons and their lifetime due to hole recoil. Eur. Phys. J. D 69, 243 (2015). https://doi.org/10.1140/epjd/e2015-60401-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2015-60401-4

Keywords

Navigation