Skip to main content
Log in

Numerical demonstration of mid-infrared temperature sensing by soliton self-frequency shift in a fluorotellurite microstructured fiber

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We theoretically proposed the concept of temperature sensing using the soliton self-frequency shift (SSFS) effect in a fluorotellurite microstructured fiber (FTMF) which had one ring of six alcohol-infiltrated air holes. The glass material for the fiber core was 70TeO2–20BaF2–10Y2O3 and the cladding AlF3–BaF2–CaF2–YF3–SrF2–MgF2–TeO2. Based on SSFS effect, temperature sensing in the mid-infrared (MIR) region was achieved by detecting the wavelength shift of solitons with the variation of temperature. Using a 2800 nm fiber laser with a pulse width of 131 fs as the pump light and a 0.5-m-long FTMF as the nonlinear media, the temperature sensing sensitivity could be as high as 2.09 nm/°C. To the best of our knowledge, this is the first study concerning temperature sensing in the MIR region by drawing on SSFS effect in a non-silica FTMF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S. Pevec, D. Donlagic, High resolution, all-fiber, micro-machined sensor for simultaneous measurement of refractive index and temperature. Opt. Express 22(13), 16241–16253 (2014)

    Article  ADS  Google Scholar 

  2. B. Lee, Review of the present status of optical fiber sensors. Opt. Fiber Technol. 9(2), 57–79 (2003)

    Article  ADS  Google Scholar 

  3. G. Numata, N. Hayashi, M. Tabaru, Y. Mizuno, K. Nakamura, Drastic sensitivity enhancement of temperature sensing based on modal interference in plastic optical fibers. Appl. Phys. Express 8(7), 072502 (2015)

    Article  ADS  Google Scholar 

  4. Z. Yang, J. Xia, S. Li, R. Qi, G. Zu, W. Li, Ultrawide temperature range operation of SPR sensor utilizing a depressed double cladding fiber coat. Opt. Express 28(1), 258–269 (2020)

    Article  ADS  Google Scholar 

  5. Y. Zhao, Z. Deng, H. Hu, Fiber-optic SPR sensor for temperature measurement. IEEE Trans. Instrum. Meas. 64(11), 3099–3104 (2015)

    Article  Google Scholar 

  6. Y. Liu, S. Li, H. Chen, J. Li, W. Zhang, M. Wang, Surface plasmon resonance induced high sensitivity temperature and refractive index sensor based on evanescent field enhanced Photonic Crystal Fiber. J. Lightwave Technol. 38(4), 919–928 (2020)

    Article  ADS  Google Scholar 

  7. X.O. Frazao, R. Morais, J.M. Baptista, J.M. Santos, Fiber ring laser sensor for strain-temperature discrimination based on four-wave mixing effect. Opt. Eng. 46(1), 010502 (2007)

    Article  ADS  Google Scholar 

  8. Y. Geng, L. Wang, Y. Xu, A.G. Kumar, X. Tan, X. Li, Wavelength multiplexing of four-wave mixing based fiber temperature sensor with oil-filled photonic crystal fiber. Opt. Express 26(21), 27907–27916 (2018)

    Article  ADS  Google Scholar 

  9. Y. Geng, L. Wang, X. Tan, J. Wang, Y. Du, X. Li, A compact four-wave mixing-based temperature fiber sensor with partially filled photonic crystal fiber. IEEE Sens. J. 19(8), 2956–2961 (2019)

    Article  ADS  Google Scholar 

  10. Y. Sun, X. Yan, F. Wang, X. Zhang, S. Li, T. Suzuki, Y. Ohishi, T. Cheng, Theoretical investigation of an alcohol-filled tellurite photonic crystal fiber temperature sensor based on four-wave mixing. Sensors 20(4), 1007 (2020)

    Article  ADS  Google Scholar 

  11. X. Li, S.C. Warrensmith, L. Xie, H. Ebendorff-Heidepriem, L.V. Nguyen, Temperature-compensated refractive index measurement using a dual Fabry-Perot interferometer based on C-fiber cavity. IEEE Sens. J. 20(12), 6408–6413 (2020)

    Article  ADS  Google Scholar 

  12. L. Jiang, J. Yang, S. Wang, B. Li, M. Wang, Fiber Mach-Zehnder interferometer based on microcavities for high-temperature sensing with high sensitivity. Opt. Lett. 36(19), 3753–3755 (2011)

    Article  ADS  Google Scholar 

  13. L. Rindorf, O. Bang, Sensitivity of photonic crystal fiber grating sensors: biosensing, refractive index, strain, and temperature sensing. J. Opt. Soc. Am. B 25(3), 310–324 (2008)

    Article  ADS  Google Scholar 

  14. Y. Zhao, S. Liu, J. Luo, Y. Chen, C. Fu, C. Xiong, Y. Wang, S. Jing, Z. Bai, C. Liao, Y. Wang, Torsion, refractive index, and temperature sensors based on an improved helical long period fiber grating. J. Lightwave Technol. 38(8), 2504–2510 (2020)

    Article  ADS  Google Scholar 

  15. J. Wang, E.M. Vogel, E. Snitzer, Tellurite glass: a new candidate for fiber devices. Opt. Mater. 3(3), 187–203 (1994)

    Article  ADS  Google Scholar 

  16. T. Cheng, Y. Xiao, S. Li, X. Yan, X. Zhang, T. Suzuki, Y. Ohishi, Highly efficient second-harmonic generation in a tellurite optical fiber. Opt. Lett. 44(19), 4686–4689 (2019)

    Article  ADS  Google Scholar 

  17. T. Cheng, F. Zhang, X. Yan, X. Zhang, F. Wang, S. Li, T. Suzuki, Y. Ohishi, Experimental investigation of dispersive wave generation and evolution in a tellurite microstructured optical fiber. J. Appl. Phys. 127(20), 203102 (2020)

    Article  ADS  Google Scholar 

  18. T. Cheng, F. Zhang, S. Tanaka, S. Li, X. Yan, X. Zhang, T. Suzuki, Y. Ohishi, Ultrafast all-optical signal modulation induced by optical kerr effect in a tellurite photonic bandgap fiber. Photonics 6(4), 113 (2019)

    Article  Google Scholar 

  19. X. Zhou, S. Li, X. Yan, X. Zhang, T. Cheng, A high-sensitivity temperature sensor based on glycerol-filled tellurite microstructure optical fiber. IEEE Access 7, 180244–180250 (2019)

    Article  Google Scholar 

  20. V.K. Rai, D.K. Rai, S.B. Rai, Pr3+ doped lithium tellurite glass as a temperature sensor. Sens. Actuator A-Phys. 128(1), 14–17 (2006)

    Article  Google Scholar 

  21. J. S. Russell, Report of the 14th Meeting of the British Association for the Advancement of Science, pp. 311–390 (1844)

  22. F. Mitschke, L.F. Mollenauer, Discovery of the soliton self-frequency shift. Opt. Lett. 11(10), 659–661 (1986)

    Article  ADS  Google Scholar 

  23. J.P. Gordon, Theory of the soliton self-frequency shift. Opt. Lett. 11(10), 662–664 (1986)

    Article  ADS  Google Scholar 

  24. J. Santhanam, G.P. Agrawal, Raman-induced spectral shifts in optical fibers: general theory based on the moment method. Opt. Commun. 222(1), 413–420 (2003)

    Article  ADS  Google Scholar 

  25. J.H. Lee, J.V. Howe, C. Xu, X. Liu, Soliton self-frequency shift: experimental demonstrations and applications. IEEE J. Quantum Electron. 14(3), 713–723 (2008)

    Article  Google Scholar 

  26. A.A. Voronin, A.M. Zheltikov, Soliton self-frequency shift decelerated by self-steepening. Opt. Lett. 33(15), 1723–1725 (2008)

    Article  ADS  Google Scholar 

  27. N. Nishizawa, T. Goto, Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers. IEEE Photonics Technol. Lett. 11(3), 325–327 (1999)

    Article  ADS  Google Scholar 

  28. M.Y. Koptev, E.A. Anashkina, A.V. Andrianov, V.V. Dorofeev, A.F. Kosolapov, S.V. Muravyev, A.V. Kim, Widely tunable mid-infrared fiber laser source based on soliton self-frequency shift in microstructured tellurite fiber. Opt. Lett. 40(17), 4094–4097 (2015)

    Article  ADS  Google Scholar 

  29. M. Kato, K. Fujiura, T. Kurihara, Asynchronous, all-optical signal processing based on the self-frequency shift of a gigahertz Raman soliton. Appl. Opt. 44(8), 1442–1447 (2005)

    Article  ADS  Google Scholar 

  30. K. Asano, Z. Duan, T.H. Tuan, T. Suzuki, Y. Ohishi, Tellurite hybrid microstructured optical fibers with flattened dispersion at the telecom window. Phys. Status Solidi (C) 9(12), 2625–2628 (2012)

    Article  ADS  Google Scholar 

  31. H. Zhan, T. Shi, A. Zhang, Z. Zhou, J. Si, A. Lin, Nonlinear characterization on mid-infrared fluorotellurite glass fiber. Mater. Lett. 120, 174–176 (2014)

    Article  Google Scholar 

  32. F. Wang, K. Wang, C. Yao, Z. Jia, S. Wang, C. Wu, G. Qin, Y. Ohishi, W. Qin, Tapered fluorotellurite microstructured fibers for broadband supercontinuum generation. Opt. Lett. 41(3), 634–637 (2016)

    Article  ADS  Google Scholar 

  33. S. Wang, Z. Jia, C. Yao, Y. Ohishi, G. Qin, W. Qin, Ho3+-doped AlF3-TeO2-based glass fibers for 2.1 mum laser applications. Laser Phys. Lett. 14(5), 055803 (2017)

    Article  ADS  Google Scholar 

  34. R.C. Kamikawachi, I. Abe, A.S. Paterno, H.J. Kalinowski, M. Muller, J.L. Pinto, J.L. Fabris, Determination of thermo-optic coefficient in liquids with fiber Bragg grating refractometer. Opt. Commun. 281(4), 621–625 (2008)

    Article  ADS  Google Scholar 

  35. Z. Jia, C. Yao, S. Jia, F. Wang, S. Wang, Z. Zhao, M. Liao, G. Qin, L. Hu, Y. Ohishi, W. Qin, Supercontinuum generation covering the entire 0.4–5 mum transmission window in a tapered ultra-high numerical aperture all-solid fluorotellurite fiber. Laser Phys. Lett. 15(2), 025102 (2018)

    Article  ADS  Google Scholar 

  36. E. Sani, A. Dell’Oro, Spectral optical constants of ethanol and isopropanol from ultraviolet to far infrared. Opt. Mater. 60, 137–141 (2016)

    Article  ADS  Google Scholar 

  37. G.P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 2009)

    MATH  Google Scholar 

  38. R.R. Alfano, The Supercontinuum Laser Source, 2nd edn. (Springer, Berlin, 2006)

    Book  Google Scholar 

  39. R.W. Boyd, Nonlinear Optics, 3rd edn. (Academic Press, Cambridge, 2008). (Chap 1)

    Google Scholar 

  40. X. Yan, G. Qin, M. Liao, T. Suzuki, Y. Ohishi, Transient Raman response and soliton self-frequency shift in tellurite microstructured fiber. J. Appl. Phys. 108(12), 123110 (2010)

    Article  ADS  Google Scholar 

  41. C. Yao, Z. Zhao, Z. Jia, Q. Li, M. Hu, G. Qin, Y. Ohishi, W. Qin, Mid-infrared dispersive waves generation in a birefringent fluorotellurite microstructured fiber. Appl. Phys. Lett. 109(10), 17–21 (2016)

    Article  Google Scholar 

  42. F. Wang, Q. Li, Z. Kang, C.F. Wu, D. Ding, G.S. Qin, Z.Y. Yang, Y. Ohishi, Numerical demonstration of widely tunable femtosecond soliton generation in chalcogenide microstructured fibers. Laser Phys. Lett. 16(10), 105402 (2019)

    Article  ADS  Google Scholar 

  43. N. Akhmediev, M. Karlsson, Cherenkov radiation emitted by solitons in optical fibers. Phys. Rev. A 51(3), 2602–2607 (1995)

    Article  ADS  Google Scholar 

  44. S.K. Srivastava, B.D. Gupta, Simulation of a localized surface-plasmon-resonance-based fiber optic temperature sensor. J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 27(7), 1743–1749 (2010)

    Article  ADS  Google Scholar 

  45. M. Yucel, N.F. Ozturk, C. Gemci, Design of a fiber Bragg grating multiple temperature sensor. 2016 sixth international conference on digital information and communication technology and its applications (DICTAP), Konya, Turkey, pp. 6–11 (2016)

  46. S. Zhang, S. Li, S. Wang, Y. Guo, X. Zhou, The characteristic analysis of temperature sensor based on a fabricated microstructure fiber by digital image processing technique and finite element method. J. Phys. D-Appl. Phys. 53(17), 175108 (2020)

    Article  ADS  Google Scholar 

  47. S. Weng, L. Pei, J. Wang, T. Ning, J. Li, High sensitivity D-shaped hole fiber temperature sensor based on surface plasmon resonance with liquid filling. Photonics Res. 5(2), 103–107 (2017)

    Article  Google Scholar 

  48. W. Gao, X. Li, P. Wang, L. Chen, C. Ni, L. Chen, X. Chen, Y. Zhou, W. Zhang, J. Hua, Investigation on sensing characteristics of fiber Bragg gratings based on soft glass fibers. Optik 156, 13–21 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key Research and Development Program of China (2019YFB2204001 and 2017YFA0701201), National Natural Science Foundation of China (61775032 and 11604042), Fundamental Research Funds for the Central Universities (N180406002, N180408018, and N2004021), JSPS KAKENHI Grant (17K18891 and 18H01504), JSPS and CERN under the JSPS-CERN joint research program, and 111 Project (B16009). The authors thank the Liao Ning Revitalization Talents Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, T., Sun, Y., Zhang, F. et al. Numerical demonstration of mid-infrared temperature sensing by soliton self-frequency shift in a fluorotellurite microstructured fiber. Appl. Phys. B 127, 156 (2021). https://doi.org/10.1007/s00340-021-07695-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-021-07695-6

Navigation