Skip to main content
Log in

Tunable terahertz gas laser based on a germanium spectrum splitter

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A tunable terahertz gas laser is demonstrated with a germanium ealton served as the spectrum splitter. The germanium ealton is 1.2-mm thick and anti-reflection coated at 10.17 μm, giving good dichroic performance for infrared and far-infrared radiation. By tuning the incident angle of the germanium ealton, the transmittance of 95% at 9– 11 μm wavelengths and the reflectance of more than 70% at 180 – 500 μm wavelengths can be achieved simultaneously. Based on the germanium ealton, a tunable CH3F gas laser is presented when pumped by a transversely excited atmospheric CO2 laser. By tuning the pump lines and the incident angles, four THz laser wavelengths are obtained including 181 μm, 261 μm, 360 μm and 496 μm. The energy conversion efficiency is in the order of 10–3, which is comparable to those of typical efficient CH3F molecule lasers. The germanium ealton is anticipated to be an efficient dichroic element for terahertz gas lasers with different wavelengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K. Xue, Q. Li, Y.D. Li, Q. Wang, Continuous-wave terahertz in-line digital holography. Opt. Lett. 37(15), 3228–3230 (2012)

    ADS  Google Scholar 

  2. J. Liu, J. Dai, S.L. Chin, X.C. Zhang, Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases. Nat. Photonics 4(9), 627–631 (2010)

    ADS  Google Scholar 

  3. A. Nakanishi, K. Fujita, K. Horita, H. Takahashi, Terahertz imaging with room-temperature terahertz difference-frequency quantum-cascade laser sources. Opt. Express 27(3), 1884–1893 (2019)

    ADS  Google Scholar 

  4. M. Kato, S.R. Tripathi, K. Murate, K. Imayama, K. Kawase, Non-destructive drug inspection in covering materials using a terahertz spectral imaging system with injection-seeded terahertz parametric generation and detection. Opt. Express 24(6), 6425–6432 (2016)

    ADS  Google Scholar 

  5. C.T. Gross, J. Kiess, A. Mayer, F. Keilmann, Pulsed high-power far-infrared gas lasers: performance and spectral survey. IEEE J. Quantum Electron. 23(4), 377–384 (1987)

    ADS  Google Scholar 

  6. M. Jackson, H. Alves, R. Holman, R. Minton, L.R. Zink, New cw optically pumped far-infrared laser emissions generated with a transverse or zig-zag pumping geometry. J. Infrared Millim. Terah. Waves 35(3), 282–287 (2014)

    Google Scholar 

  7. S. Ifland, M. McKnight, P. Penoyar, M. Jackson, New far-infrared laser emissions from optically pumped 13CHD2OH. IEEE J. Quantum Electron. 50(1), 23–24 (2014)

    ADS  Google Scholar 

  8. E.R. Mueller, T.E. Wilson, J. Waldman, J.T. Kennedy, R.A. Hart, Generation of high repetition rate far-infrared laser pulses. Appl. Phys. Lett. 64(25), 3383–3385 (1994)

    ADS  Google Scholar 

  9. B.H. Deng, K. Knapp, P. Feng, J. Kinley, C. Weixel, Innovative high-gain optically pumped far-infrared laser. Appl. Opt. 55(21), 5580–5584 (2016)

    ADS  Google Scholar 

  10. J. Qin, X. Zheng, X. Luo, X. Huang, Y. Lin, Study on spectral characteristics and operating parameters of optically pumped NH3 FIR cavity laser. IEEE J. Quantum Electron. 34(1), 32–39 (1998)

    ADS  Google Scholar 

  11. C.C. Qi, D.L. Zuo, Y.Z. Lu, L. Miao, J. Yin, Z.H. Cheng, A 1.35 mJ ammonia Fabry-Perot cavity terahertz pulsed laser with metallic capacitive-mesh input and output couplers. Opt. Laser Eng. 48(9), 888–892 (2010)

    Google Scholar 

  12. D.R. Cohn, T. Fuse, K.J. Button, B. Lax, Z. drozdowicz, Development of an efficient 9-kW 496 μm CH3F laser oscillator. Appl. Phys. Lett. 27(5), 280–282 (1975)

    ADS  Google Scholar 

  13. G. Dodel, G. Magyar, Oscillator and superradiant 66 μm emission from a zig-zag pumped high energy D2O laser. Appl. Phys. Lett. 32(1), 44–46 (1978)

    ADS  Google Scholar 

  14. A.T. Rosenberger, T.A. DeTemple, Far-infrared superradiance in methyl fluoride. Phys. Rev. A 24(2), 868–881 (1981)

    ADS  Google Scholar 

  15. D.P. Scherrer, A.W. Kälin, R. KesseMng, F.K. Kneubiihl, Ultrashort far-infrared superradiant emissions optically pumped by truncated hybrid 10 μm CO2 laser pulses. Appl. Phys. B 53(4), 250–252 (1991)

    ADS  Google Scholar 

  16. R. Behn, I. Kjelberg, P.D. Morgan, T. Okada, M.R. Siegrist, A high power D2O laser optimized for microsecond pulse duration. J. Appl. Phys. 54(6), 2995–3002 (1983)

    ADS  Google Scholar 

  17. L. Miao, D.L. Zuo, Z.X. Jiu, Z.H. Cheng, An efficient cavity for optically pumped terahertz lasers. Opt. Commun. 283(16), 3171–3175 (2010)

    ADS  Google Scholar 

  18. L.J. Geng, Y.C. Qu, W.J. Zhao, J. Du, Highly efficient and compact cavity oscillator for high-power, optically pumped gas terahertz laser. Opt. Lett. 38(22), 4793–4796 (2013)

    ADS  Google Scholar 

  19. P. Woskoboinikow, H.C. Praddaude, W.J. Mulligan, D.R. Cohn, B. Lax, High-power tunable 385μm D2O vapor laser optically pumped with a single-mode tunable TEA CO2 laser. J. Appl. Phys. 50(2), 1125–1127 (1979)

    ADS  Google Scholar 

  20. D. Grischkowsky, S. Keiding, M. van Exter, Ch Fattinger, Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. J. OPT. SOC. Am. B 7(10), 2006–2015 (1990)

    ADS  Google Scholar 

  21. C.J. Johnson, G.H. Sherman, R. Weil, Far infrared measurement of the dielectric properties of GaAs and CdTe at 300 K and 8 K. Appl. Opt. 8(8), 1667–1671 (1969)

    ADS  Google Scholar 

  22. C. Liu, Y.C. Qu, W.J. Zhao, R.L. Zhang, Efficient oscillator for 192-μm optically pumped pulsed laser. J. Infrared Millim. Terah. Waves 36(9), 789–796 (2015)

    Google Scholar 

  23. C. Liu, Y.C. Qu, W.J. Zhao, R.L. Zhang, Highly efficient oscillator for an optically pumped 192-μm far-infrared laser. App. Phys. B 122(2), 1–4 (2016)

    ADS  Google Scholar 

  24. V.A. Batanov, V.B. Fleurov, O.M. Khlebnikov, KYu Kuzmin, I.A. Lesnov, A.O. Radkevich, S.V. Timofeev, AYu Volkov, Compact Raman CH3F, NH3 optically pumped FIR laser. Int. J. Infrared Milli. 11(29), 435–442 (1990)

    ADS  Google Scholar 

  25. L. Bachmann, D.M. Zezell, E.P. Maldonado, Determination of beam width and quality for pulsed lasers using the knife-edge method. Instrum. Sci. Technol. 31(1), 47–52 (2003)

    Google Scholar 

Download references

Acknowledgements

Instrument support from Harbin Institute of Technology is acknowledged.

Funding

Foundation of the Education Department of Jilin Province, China (Grant No. JJKH20190565KJ) and Scientific Innovation Foundation of Changchun University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuang Liu.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Zheng, L., Wang, J. et al. Tunable terahertz gas laser based on a germanium spectrum splitter. Appl. Phys. B 126, 133 (2020). https://doi.org/10.1007/s00340-020-07486-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-020-07486-5

Navigation