Skip to main content
Log in

Tunable laser-based detection of benzene using spectrally narrow absorption features

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A mid-infrared laser-based sensor for the detection of gas-phase benzene (C6H6) in ambient air is presented. It is based on the principle of tunable laser absorption spectroscopy utilizing unique fine spectral features of benzene near 3.4 µm, along with the robust design of an optical multi-pass cell. The sensor is capable of providing real-time measurement of benzene as low as 200 ppb (12 ppm m) at 2 Hz, while still being portable enough to fit in the trunk of a small car. A demonstration measurement in a moving vehicle is presented based on the data collected along Highway 101, El Camino Real, and around Stanford University campus in California, showing elevated benzene emission in several spatial regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. W. Abplanalp et al., Benzene exposure is associated with cardiovascular disease risk. PLoS One 12(9), 1–15 (2017)

    Article  Google Scholar 

  2. H.H. Hamid, N.S. Jumah, M. Talib Latif, N. Kannan, BTEXs in indoor and outdoor air samples: source apportionment and health risk assessment of benzene. J. Environ. Sci. Public Heal. 1(1), 49–56 (2017)

    Article  Google Scholar 

  3. A.M. Moro et al., Biomonitoring of gasoline station attendants exposed to benzene: effect of gender. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 813, 1–9 (2017)

    Article  Google Scholar 

  4. B.R. Appel et al., Benzene, benzo(a)pyrene, and lead in smoke from tobacco products other than cigarettes. Am. J. Public Health 80(5), 560–564 (1990)

    Article  Google Scholar 

  5. C.C. Austin, D. Wang, D.J. Ecobichon, G. Dussault, Characterization of volatile organic compounds in smoke at experimental fires. J. Toxicol. Environ. Heal. Part A 63(3), 191–206 (2001)

    Article  Google Scholar 

  6. G.P. Macey et al., Air concentrations of volatile compounds near oil and gas production: a community-based exploratory study. Environ. Health 13(1), 82 (2014)

    Article  Google Scholar 

  7. R.K. Hanson, R.M. Spearrin, C.S. Goldenstein, Spectroscopy and Optical Diagnostics for Gases, 1st edn. (Springer, New York, 2016)

    Book  Google Scholar 

  8. P.O. Wennberg et al., On the sources of methane to the Los Angeles atmosphere. Environ. Sci. Technol. 46(17), 9282–9289 (2012)

    Article  ADS  Google Scholar 

  9. R. Lewicki et al., Ammonia sensor for environmental monitoring based on a 10.4 µm external-cavity quantum cascade laser. in Lasers, Sources and Related Photonic Devices, OSA Technical Digest Series (CD) (2010). https://doi.org/10.1364/LACSEA.2010.LTuD2

  10. R. Ghorbani, F.M. Schmidt, ICL-based TDLAS sensor for real-time breath gas analysis of carbon monoxide isotopes. Opt. Express 25(11), 12743 (2017)

    Article  ADS  Google Scholar 

  11. S. Affolter, D. Fleitmann, M. Leuenberger, New online method for water isotope analysis of speleothem fluid inclusions using laser absorption spectroscopy (WS-CRDS). Clim. Past 10(4), 1291–1304 (2014)

    Article  Google Scholar 

  12. M. Gupta, Highly-precise measurements of ambient oxygen using near-infrared cavity-enhanced laser absorption spectrometry. Anal. Chem. 84(18), 7987–7991 (2012)

    Article  Google Scholar 

  13. R.K. Hanson, Applications of quantitative laser sensors to kinetics, propulsion and practical energy systems. Proc. Combust. Inst. 33(1), 1–40 (2011)

    Article  Google Scholar 

  14. Y. Ding, C.L. Strand, R.K. Hanson, High-temperature mid-infrared absorption spectra of methanol (CH3OH) and ethanol (C2H5OH) between 930 and 1170 cm−1. J. Quant. Spectrosc. Radiat. Transf. 224, 396–402 (2019)

    Article  ADS  Google Scholar 

  15. I.A. Schultz et al., Multispecies midinfrared absorption measurements in a hydrocarbon-fueled scramjet combustor. J. Propuls. Power 30(6), 1595–1604 (2014)

    Article  Google Scholar 

  16. G.B. Rieker, J.B. Jeffries, R.K. Hanson, Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments. Appl. Opt. 48(29), 5546–5560 (2009)

    Article  ADS  Google Scholar 

  17. R. Sur, K. Sun, J.B. Jeffries, J.G. Socha, R.K. Hanson, Scanned-wavelength-modulation-spectroscopy sensor for CO, CO2, CH4 and H2O in a high-pressure engineering-scale transport-reactor coal gasifier. Fuel 150, 102–111 (2015)

    Article  Google Scholar 

  18. R. Sur, T.J. Boucher, M.W. Renfro, B.M. Cetegen, In situ measurements of water vapor partial pressure and temperature dynamics in a PEM fuel cell. J. Electrochem. Soc. 157(1), B45 (2010)

    Article  Google Scholar 

  19. S.N. Sharpe, T.J. Johnson, R.L. James, P.M. Chu, G.C. Rhoderick, P.A. Johnson, Gas phase database for quantitative infrared spectroscopy. Appl. Spectrosc. 58(12), 1452–1461 (2004)

    Article  ADS  Google Scholar 

  20. W. Kemp, Organic Spectroscopy, 3rd edn. (Wacmillan Education, Ltd., London, 1991)

    Book  Google Scholar 

  21. I.E. Gordon et al., The HITRAN2016 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 203, 3–69 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the Stanford Woods Institute for the Environment through the Environmental Ventures Program (EVP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Ding.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sur, R., Ding, Y., Jackson, R.B. et al. Tunable laser-based detection of benzene using spectrally narrow absorption features. Appl. Phys. B 125, 195 (2019). https://doi.org/10.1007/s00340-019-7311-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-019-7311-z

Navigation