Skip to main content
Log in

Dual-cladding high birefringence photonic crystal fiber with elliptical-core

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A novel elliptical core photonic crystal fiber (EC-PCF) is proposed with a trapezoidal outer cladding and three different inner claddings in this paper. The material of proposed fiber is a combination of the background material of silica and core material of As2S3. Using the finite element method (FEM) with the boundary condition of the circular perfectly matched layer (C-PML), the effect of different inner cladding structures (ellipse plus circles, strip circles, and hexagonal circles) on birefringence and nonlinear coefficients is analyzed. Simulation results show that the inner cladding has revealed a high birefringence in the order of 3.3136 × 10-1 with strip circles, while the nonlinear coefficients for x- and y-polarization is 2.81 × 104 w−1/km and 2.09 × 104 w−1/km at an operation wavelength of 1.55 μm, respectively. The demonstration of our proposed fiber can supply a feasible method for optical communication and supercontinuum generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. E. Yablonvitch, Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987)

    Article  ADS  Google Scholar 

  2. S. John, Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987)

    Article  ADS  Google Scholar 

  3. P.S.J. Russell, Photonic band-gap. Phys. World 5, 37–42 (1992)

    Article  Google Scholar 

  4. J.C. Knight, T.A. Birks, P.S.J. Russell et al., All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 21, 1547–1549 (1996)

    Article  ADS  Google Scholar 

  5. J.C. Knight, Photonic crystal fibers. Nature 424, 847–851 (2003)

    Article  ADS  Google Scholar 

  6. P.S.J. Russell, Photonic crystal fibers. Science 358, 299–302 (2003)

    Google Scholar 

  7. J.C. Knight, J. Arriaga, T.A. Birks et al., Photonic band-gap guidance in optical fibers. Science 282, 1476–1478 (1998)

    Article  Google Scholar 

  8. T.A. Birks, J.C. Knight, P.S.J. Russell, Endlessly single-mode photonic crystal fiber. Opt. Lett. 22, 961–963 (1997)

    Article  ADS  Google Scholar 

  9. J.C. Knight, J. Arriaga, T.A. Birks et al., Anomalous dispersion in photonic crystal fiber. IEEE Photon Technol. Lett. 12, 807–809 (2000)

    Article  ADS  Google Scholar 

  10. K. Saitoh, M. Koshiba, Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window. Opt. Express 12, 2027–2032 (2004)

    Article  ADS  Google Scholar 

  11. A.O. Blanch et al., Highly birefringence photonic crystal fibers. Opt. Lett. 25, 1325–1327 (2000)

    Article  ADS  Google Scholar 

  12. W. Gobel, A. Nimmerjahn, F. Helmchen, Distortion-free delivery of nanojoule femtosecond pulses from a Ti: sapphire laser through a hollow-core photonic crystal fiber. Opt. Lett. 29, 1285–1287 (2004)

    Article  ADS  Google Scholar 

  13. G. Pickrell, W. Peng, A. Wang, Random-hole optical fiber evanescent-wave gas sensing. Opt. Lett. 29, 1476–1478 (2004)

    Article  ADS  Google Scholar 

  14. L. Michaile, C.R. Bennett, D.M. Taylor et al., Phase locking and supermode selection in multicore photonic crystal fiber lasers with a large doped area. Opt. Lett. 30, 1668–1670 (2005)

    Article  ADS  Google Scholar 

  15. A. Efimov et al., Phase-matched third harmonic generation in microstructured fibers. Opt. Express 11, 2567–2576 (2003)

    Article  ADS  Google Scholar 

  16. J. Limpert et al., High-power airclad large-mode-area photonic crystal fiber laser. Opt. Express 11, 818–823 (2003)

    Article  ADS  Google Scholar 

  17. C.E. Kerbage, B.J. Eggleton, P.S. Westbrook et al., Experimental and scalar beam propagation analysis of an air-silica microstructure fiber. Opt. Express 7, 113–122 (2000)

    Article  ADS  Google Scholar 

  18. F. Tani, F. Belli, A. Abdolvand, J.C. Travers, P.S.J. Russell, Generation of three-octave-spanning transient Raman comb in hydrogen-filled hollow-core PCF. Opt. Lett. 40, 1026–1029 (2015)

    Article  ADS  Google Scholar 

  19. J.A. Robert, J. Francis, J.M. Peter, Characterisation of longitudinal variation in photonic crystal fibre. Opt. Express 24, 24836–24845 (2016)

    Article  ADS  Google Scholar 

  20. M.J. Steel, R.M. Osgood, Polarization and dispersive properties of elliptical-hole photonic crystal fibers. J. Lightwave Technol. 19, 495–503 (2001)

    Article  ADS  Google Scholar 

  21. J. Ju, W. Jin, M.S. Demokan, Two-mode operation in highly birefringent photonic crystal fiber. IEEE Photon Technol. Lett. 16, 2472–2474 (2004)

    Article  ADS  Google Scholar 

  22. X. Chen, M.J. Li, N. Venkataraman et al., Highly birefringent hollow-core photonic bandgap fiber. Opt. Express 12, 3888–3893 (2004)

    Article  ADS  Google Scholar 

  23. M.-Y. Chen, R.-J. Yu, A.-P. Zhao, Highly birefringent rectangular lattice photonic crystal fibres. J. Opt. A Pure Appl. Opt. 6(10), 997–1000 (2004)

    Article  ADS  Google Scholar 

  24. G.Y. Jiang, Y.J. Fu, Y. Huang, High birefringence rectangular-hole photonic crystal fiber. Opt. Fiber Technol. 26, 163–171 (2015)

    Article  ADS  Google Scholar 

  25. S.E. Kim, B.H. Kim, S. Lee, C.S. Kee, C.G. Lee, K. Oh, Elliptical defected core photonic crystal fiber with high birefringence and negative flattened dispersion. Opt. Express 20, 1385–1391 (2012)

    Article  ADS  Google Scholar 

  26. X.Y. Li, P.A. Liu, Z.L. Xu, Z.Y. Zhang, Design of a pentagonal photonic crystal fiber with high birefringence and large flattened negative dispersion. Appl. Opt. 54, 7350–7357 (2015)

    Article  ADS  Google Scholar 

  27. M.A. Hossain, Y. Namihira, M.A. Islan, Polarization maintaining highly nonlinear photonic crystal fiber for supercontinuum generation at 1.55 μm. Opt. Laser Technol. 44, 1261–1269 (2012)

    Article  ADS  Google Scholar 

  28. J.S. Sanghera, L.B. Shaw, I.D. Aggarwal, Chalcogenide glass-fiber-based Mid-IR sources and applications. IEEE J. Sel. Top. Quantum 15, 114–119 (2009)

    Article  Google Scholar 

  29. R.A.H. Ali, M.F.O. Hameed, S.S.A. Obayya, Ultrabroadband supercontinuum generation through photonic crystal fiber with As2S3 chalcogenide core. J. Lightwave Technol. 34, 5423–5430 (2016)

    Article  ADS  Google Scholar 

  30. L. Zhang, Y. Yue, Y.X. Li, J. Wang, R.G. Beausoleil, A.E. Willner, Flat and low dispersion in highly nonlinear slot waveguides. Opt. Express 18, 13187–13193 (2010)

    Article  ADS  Google Scholar 

  31. J. Broeng, D. Mogilevstev, S.E. Barkou, A. Bjarklev, Photonic crystal fibers: a new class of optical waveguides. Opt. Fiber Technol. 5, 305–330 (1999)

    Article  ADS  Google Scholar 

  32. S. Fevrier, P. Leproux, V. Couderc, Microstructured fibers for sensing applications. Proc. SPIE 6005, 60050E-15 (2016)

    Google Scholar 

  33. M.J. Steel, J.R.M. Osgood, Elliptical-hole photonic crystal fibers. Opt. Lett. 26, 229–231 (2001)

    Article  ADS  Google Scholar 

  34. L. Wang, D. Yang, Highly birefringent elliptical-hole rectangular-lattice photonic crystal fibers with modified air holes near the core. Opt. Express. 15(14), 8892–8897 (2007)

    Article  ADS  Google Scholar 

  35. F. Beltrán-Mejía, G. Chesini, E. Silvestre et al., Ultrahigh-birefringent squeezed lattice photonic crystal fiber with rotated elliptical air holes. Opt. Lett. 35(4), 544–546 (2010)

    Article  ADS  Google Scholar 

  36. X.S. Liu et al., Dual-core antiresonant hollow core fibers. Opt. Express 24, 17453–17458 (2016)

    Article  ADS  Google Scholar 

  37. T.Y. Yang et al., High birefringence photonic crystal fiber with high nonlinearity and low confinement loss. Opt. Express 23, 8329–8337 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I would like to thank N. Wang and H. Z. Jia who provided language help during the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongzhi Jia.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, C., Wang, N., Li, K. et al. Dual-cladding high birefringence photonic crystal fiber with elliptical-core. Appl. Phys. B 125, 158 (2019). https://doi.org/10.1007/s00340-019-7273-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-019-7273-1

Navigation