Skip to main content
Log in

Flexible picosecond burst generation in a mode-locked Nd:YVO4 laser with a compound cavity

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We present the generation of picosecond bursts with controllable pulse number in a passively mode-locked Nd:YVO4 laser with a compound cavity. This is the first time to use a compound cavity with additional SESAM to generate pulse burst. The device is constructed by inserting an HWP in the cavity, which reflects part of light in the main cavity into the auxiliary cavity and then the reflected beam is sent back after a delay in the auxiliary cavity. By controlling the power reflected into the main cavity from the auxiliary cavity, a series of bursts can be created with a selectable pulse number and adjustable temporal separation between the pulses. The temporal separation between two adjacent picosecond pulses in the burst can be adjusted by changing the length difference between two cavities. The temporal width of the burst can be adjusted from picosecond to nanosecond, and the repetition rate of the burst is the same as that in continuous wave mode-locked laser. The generation of the burst is presumably attributed to the temporal addition of laser pulses from the two cavities. This work provides a useful method for generating controllable picosecond laser burst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. U. Keller, D.A.B. Miller, G.D. Boyd, T.H. Chiu, J.F. Ferguson, M.T. Asom, Opt. Lett. 17(7), 505–507 (1992)

    Article  ADS  Google Scholar 

  2. U. Keller, K.J. Weingaryen, F.X. Kärtner, D. Kopf, B. Braum, I.D. Jung, R. Fluck, C. Hönninger, N. Matuschek, J. Aus der Au, IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996)

    Article  ADS  Google Scholar 

  3. U. Keller, Nature 424, 831–838 (2003)

    Article  ADS  Google Scholar 

  4. A. Ancona, S. Döring, C. Jauregui, F. Röser, J. Limpert, S. Nolte, A. Tünnermann, Opt. Lett. 34(21), 3304–3306 (2009)

    Article  ADS  Google Scholar 

  5. J. Griffiths, S.P. Edwardson, G. Dearden, K.G. Watkins, Appl. Surf. Sci. 258(19), 7639–7643 (2012)

    Article  ADS  Google Scholar 

  6. F. Kienle, P.S. Teh, D. Lin, S.U. Alam, J.H.V. Price, D.C. Hanna, D.J. Richardson, D.P. Shepherd, Opt. Express 20(7), 7008–7014 (2012)

    Article  ADS  Google Scholar 

  7. T. Liu, J. Wang, G.I. Petrov, V.V. Yakovlev, H.F. Zhang, Med. Phys. 37(4), 1518–1521 (2010)

    Article  Google Scholar 

  8. G. Livescu, L.M.F. Chirovsky, T. Mullally, A. Ron, Opt. Lett. 20, 2324–2326 (1995)

    Article  ADS  Google Scholar 

  9. C.W. Siders, J.L.W. Siders, A.J. Taylor, S.-G. Park, A.M. Weiner, Appl. Opt. 37, 5302–5305 (1998)

    Article  ADS  Google Scholar 

  10. T. Ozaki, H. Kuroda, Phys. Rev. A 58, 1605–1608 (1998)

    Article  ADS  Google Scholar 

  11. T. Liu, J. Wang, G.I. Petrov, V.V. Yakovleva, H.F. Zhang, Med. Phys. 37, 1518–1521 (2010)

    Article  Google Scholar 

  12. M.L. Long, G. Li, M. Chen, Appl. Opt. 56, 4274–4277 (2017)

    Article  ADS  Google Scholar 

  13. A.L. Kastengren, J.C. Dutton, G.S. Elliott, Phys. Fluids 19, 015103 (2007)

    Article  ADS  Google Scholar 

  14. A. Nebel, T. Herrmann, B. Henrich, R. Knappe, Proc. SPIE 6108, 610812 (2006)

    Article  Google Scholar 

  15. B. Thurow, A. Satija, in 44th AIAA Aerospace Sciences Meeting, Report AIAA-2006-1384 (American Institute of Aeronautics and Astronautics, Reno, NV, 2006)

  16. R. Knappe, Proc. SPIE 8243, 82430I (2012)

    Article  ADS  Google Scholar 

  17. B. Dromey et al., Appl. Opt. 46, 5142–5146 (2007)

    Article  ADS  Google Scholar 

  18. Shian Zhou et al., Appl. Opt. 46, 8488–8492 (2007)

    Article  ADS  Google Scholar 

  19. R. Knappe et al., Proc. SPIE 7585, 75850H-1-7585H-6 (2010)

    Google Scholar 

  20. R.S. Marjoribanks, F.W. Budnik, G.K.L. Zhao, M. Staniner, J. Mihaychuk, Opt. Lett. 18, 361–363 (1993)

    Article  ADS  Google Scholar 

  21. W. Hu, Y.C. Shin, G. King, Appl. Phys. A 98, 407–415 (2010)

    Article  ADS  Google Scholar 

  22. C. Kerse et al., Nature 537, 84–89 (2016)

    Article  ADS  Google Scholar 

  23. Z.Q. Cai, P. Wang, W.Q. Wen, X. Ding, J.Q. Yao, Chin. J. Lasers 34, 901–907 (2007)

    Google Scholar 

  24. H. Kalaycıoğlu et al., Opt. Lett. 37(13), 2586–2588 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been supported by National Key R&D Program of China (2017YFB0405200). And the National Natural Science Foundation of China (61675192, 61605195, 61308032, 61622507). Key Deployment Program of Chinese Academy of Sciences (KGZD-SW-T01-2). Chinese Academy of Sciences Scientific Equipment Research Project (Grant no. YJKYYQ20170003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuechun Lin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, C., Yu, H., Zhang, J. et al. Flexible picosecond burst generation in a mode-locked Nd:YVO4 laser with a compound cavity. Appl. Phys. B 125, 147 (2019). https://doi.org/10.1007/s00340-019-7256-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-019-7256-2

Navigation