Skip to main content
Log in

Modeling of multi-burst mode pico-second laser ablation for improved material removal rate

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper deals with the unique phenomena occurring during the multi-burst mode picosecond (ps) laser ablation of metals through modeling and experimental studies. The two-temperature model (TTM) is used and expanded to calculate the ablation depth in the multi-burst mode. A nonlinear increment of ablation volume is found during the multi-burst laser ablation. The deactivation of ablated material and the application of temperature-dependent electron-phonon coupling are demonstrated to be important to provide reliable results. The simulation results based on this expanded laser ablation model are experimentally validated. A significant increase of ablation rate is found in the multi-burst mode, compared with the single-pulse mode under the same total fluence. This numerical model provides a physical perspective into the energy transport process during multi-burst laser ablation and can be used to study the pulse-to-pulse separation time effect on the ablation rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B.N. Chichkov, B. Wellegehausen, H. Welling, Ablation of metals by ultrashort laser pulses. J. Opt. Soc. Am. B 14, 2716 (1997)

    Article  ADS  Google Scholar 

  2. J. Jandeleit, A. Horn, E.W. Kreutz, R. Poprawe, Micromachining of metals and ceramics by nano- and picosecond laser radiation. Proc. SPIE 3223, 34 (1997)

    Article  ADS  Google Scholar 

  3. F. Dausinger, H. Hügel, V. Konov, Micro-machining with ultrashort laser pulses: From basic understanding to technical applications. Proc. SPIE 5147, 106 (2003)

    Article  ADS  Google Scholar 

  4. M. Lapczyna, K.P. Chen, P.R. Herman, H.W. Tan, R.S. Marjoribanks, Ultra high repetition rate (133 MHz) laser ablation of aluminum with 1.2-ps pulses. Appl. Phys. A 69, S883 (1999)

    Article  ADS  Google Scholar 

  5. R. Le Harzic, D. Breitling, S. Sommer, C. Föhl, K. König, F. Dausinger, E. Audouard, Processing of metals by double pulses with short laser pulses. Appl. Phys. A 81, 1121 (2005)

    Article  ADS  Google Scholar 

  6. A. Semerok, C. Dutouquet, Ultrashort double pulse laser ablation of metals. Thin Solid Films 453–454, 501 (2004)

    Article  Google Scholar 

  7. O. Andrusyak, M. Bubelnik, J. Mares, T. McGovern, C.W. Siders, Single-pulse and burst-mode ablation of gold films measured by quartz crystal microbalance. Proc. SPIE 5647, 61 (2005)

    Article  ADS  Google Scholar 

  8. A.A. Andreev, J. Limpouch, A.B. Iskakov, H. Nakano, Enhancement of x-ray line emission from plasmas produced by short high-intensity laser double pulses. Phys. Rev. E 65, 026403 (2002)

    Article  ADS  Google Scholar 

  9. C. Lehane, H.S. Kwok, Enhanced drilling using a dual-pulse Nd:YAG laser. Appl. Phys. A 73, 45 (2001)

    Article  ADS  Google Scholar 

  10. A.C. Forsman, P.S. Banks, M.D. Perry, E.M. Campbell, A.L. Dodell, M.S. Armas, Double-pulse machining as a technique for the enhancement of material removal rates in laser machining of metals. J. Appl. Phys. 98, 033302 (2005)

    Article  ADS  Google Scholar 

  11. G.W. Rieger, M. Taschuk, Y.Y. Tsui, R. Fedosejevs, Comparative study of laser-induced plasma emission from microjoule picosecond and nanosecond KrF-laser pulses. Spectrochim. Acta, Part B 58, 497 (2003)

    Article  ADS  Google Scholar 

  12. A. Ancona, F. Röser, K. Rademaker, J. Limpert, S. Nolte, A. Tünnermann, High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system. Opt. Express 16, 8958 (2008)

    Article  ADS  Google Scholar 

  13. C. Cheng, X. Xu, Mechanisms of decomposition of metal during femtosecond laser ablation. Phys. Rev. B 72, 165415 (2005)

    Article  ADS  Google Scholar 

  14. B. Wu, Y.C. Shin, A simple model for high fluence ultra-short pulsed laser metal ablation. Appl. Surf. Sci. 247, 4079 (2007)

    Article  ADS  Google Scholar 

  15. B.H. Christensen, K. Vestentoft, P. Balling, Short-pulse ablation rates and the two-temperature model. Appl. Surf. Sci. 253, 6347 (2007)

    Article  ADS  Google Scholar 

  16. F. Vidal, T.W. Johnston, S. Laville, O. Barthelemy, M. Chaker, B.L. Drogoff, J. Margot, M. Sabsabi, Critical-point phase separation in laser ablation of conductors. Phys. Rev. Lett. 86, 2573 (2001)

    Article  ADS  Google Scholar 

  17. T.Q. Qiu, C.L. Tien, Heat transfer mechanisms during short-pulse laser heating of metals. ASME J. Heat Transfer 115, 835 (1993)

    Article  Google Scholar 

  18. S.I. Anisimov, V.V. Zhakhovski, N.A. Inogamov, K. Nishihara, Yu.V. Petrov, V.A. Khokhlov, Ablated matter expansion and crater formation under the action of ultrashort laser pulse. J. Exp. Theor. Phys. 103, 183 (2006)

    Article  ADS  Google Scholar 

  19. B. Sallé, O. Gobert, P. Meynadier, M. Perdrix, G. Petite, A. Semerok, Femtosecond and picosecond laser microablation: ablation efficiency and laser microplasma expansion. Appl. Phys. A 69, S381 (1999)

    Article  ADS  Google Scholar 

  20. A. Semerok, B. Sallé, J.F. Wagner, G. Petite, O. Gobert, P. Meynadier, M. Perdrix, Microablation of pure metals: laser plasma and crater investigations. Proc. SPIE 4423, 153 (2001)

    Article  ADS  Google Scholar 

  21. S.S. Wellershoff, J. Hohlfeld, J. Güdde, E. Matthias, The role of electron-phonon coupling in femtosecond laser damage of metals. Appl. Phys. A 69, S99 (1999)

    ADS  Google Scholar 

  22. J.K. Chen, W.P. Latham, J.E. Beraun, The role of electron-phonon coupling in ultrafast laser heating. J. Laser Appl. 17, 63 (2005)

    Article  Google Scholar 

  23. N.N. Nedialkov, S.E. Imamova, P.A. Atanasov, Ablation of metals by ultrashort laser pulses. J. Phys. D: Appl. Phys. 37, 638 (2004)

    Article  ADS  Google Scholar 

  24. K. Furusawa, K. Takahashi, H. Kumagai, K. Midorikawa, M. Obara, Ablation characteristics of Au, Ag, and Cu metals using a femtosecond Ti:sapphire laser. Appl. Phys. A 69, S359 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yung C. Shin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, W., Shin, Y.C. & King, G. Modeling of multi-burst mode pico-second laser ablation for improved material removal rate. Appl. Phys. A 98, 407–415 (2010). https://doi.org/10.1007/s00339-009-5405-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-009-5405-x

PACS

Navigation