Skip to main content
Log in

Coherence in laser-driven electrons at the surface and in the volume of solid matter

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The femtosecond frequency comb allows controlling the carrier field of ultrashort laser pulses. We show two examples on how this control over fields oscillating with a few hundred terahertz can be utilized to control electrons at the surface and in the volume of solids. After a brief discussion of strong-field physics at metal needle tips, we show how ultrafast two-color laser pulses allow quantum path interference to dramatically alter the emission current from sharp tips, with an interference visibility of 94%. With carrier-envelope phase-controlled laser pulses, we show furthermore how light-field sensitive currents can be excited in monolayer graphene via an interplay of interband and intraband electron dynamics including multiple Landau–Zener transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. T. Udem, R. Holzwarth, T.W. Hänsch, Nature 416, 233 (2002)

    Article  ADS  Google Scholar 

  2. A. McPherson, G. Gibson, H. Jara, U. Johann, T.S. Luk, I.A. McIntyre, K. Boyer, C.K. Rhodes, J. Opt. Soc. Am. B 4, 595 (1987)

    Article  ADS  Google Scholar 

  3. M. Ferray, A. L’Huillier, X.F. Li, L.A. Lompre, G. Mainfray, C. Manus, J. Phys. B At. Mol. Opt. Phys. 21, L31 (1988)

    Article  ADS  Google Scholar 

  4. P.B. Corkum, F. Krausz, Nat. Phys. 3, 381 (2007)

    Article  Google Scholar 

  5. T. Schultz, M. Vrakking (eds.), Attosecond and XUV Spectroscopy: Ultrafast Dynamics and Spectroscopy (Wiley-VCH, Weinheim, 2014)

    Google Scholar 

  6. T.W. Hänsch, Rev. Mod. Phys. 78, 1297 (2006)

    Article  ADS  Google Scholar 

  7. T. Nakajima, P. Lambropoulos, Phys. Rev. A 50, 595 (1994)

    Article  ADS  Google Scholar 

  8. A. Apolonski, P. Dombi, G.G. Paulus, M. Kakehata, R. Holzwarth, T. Udem, C. Lemell, K. Torizuka, J. Burgdörfer, T.W. Hänsch, F. Krausz, Phys. Rev. Lett. 92, 073902 (2004)

    Article  ADS  Google Scholar 

  9. M.A. Porras, Phys. Rev. E 65, 026606 (2002)

    Article  ADS  Google Scholar 

  10. D. Hoff, M. Krüger, L. Maisenbacher, A. M. Sayler, G. G. Paulus, P. Hommelhoff, to be published (2017)

  11. L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge University Press, Cambridge, 2012)

    Book  Google Scholar 

  12. S. Thomas, M. Krüger, M. Förster, M. Schenk, P. Hommelhoff, Nano Lett. 13, 4790 (2013)

    Article  ADS  Google Scholar 

  13. M. Krüger, S. Thomas, M. Förster, P. Hommelhoff, J. Phys. B At. Mol. Opt. Phys. 47, 124022 (2014)

    Article  ADS  Google Scholar 

  14. S. Thomas, G. Wachter, C. Lemell, J. Burgdörfer, P. Hommelhoff, New J. Phys. 17, 063010 (2015)

    Article  ADS  Google Scholar 

  15. M. Aeschlimann, C.A. Schmuttenmaer, H.E. Elsayed-Ali, R.J.D. Miller, J. Cao, Y. Gao, D.A. Mantell, J. Chem. Phys. 102, 8606 (1995)

    Article  ADS  Google Scholar 

  16. M. Schenk, M. Krüger, P. Hommelhoff, Phys. Rev. Lett. 105, 257601 (2010)

    Article  ADS  Google Scholar 

  17. N.B. Delone, V.P. Krainov, Multiphoton Processes in Atoms (Springer, Berlin, 1994)

    Book  Google Scholar 

  18. R. Bormann, M. Gulde, A. Weismann, S.V. Yalunin, C. Ropers, Phys. Rev. Lett. 105, 147601 (2010)

    Article  ADS  Google Scholar 

  19. M. Bionta, B. Chalopin, J. Champeaux, S. Faure, A. Masseboeuf, P. Moretto-Capelle, B. Chatel, J. Mod. Opt. 61, 833 (2014)

    Article  ADS  Google Scholar 

  20. M. Krüger, M. Schenk, P. Hommelhoff, Nature 475, 78 (2011)

    Article  Google Scholar 

  21. G. Wachter, C. Lemell, J. Burgdörfer, M. Schenk, M. Krüger, P. Hommelhoff, Phys. Rev. B 86, 035402 (2012)

    Article  ADS  Google Scholar 

  22. M. Krüger, M. Schenk, P. Hommelhoff, G. Wachter, C. Lemell, J. Burgdörfer, New J. Phys. 14, 085019 (2012)

    Article  ADS  Google Scholar 

  23. G. Herink, D.R. Solli, M. Gulde, C. Ropers, Nature 483, 190 (2012)

    Article  ADS  Google Scholar 

  24. B. Piglosiewicz, S. Schmidt, D.J. Park, J. Vogelsang, P. Gross, C. Manzoni, P. Farinello, G. Cerullo, C. Lienau, Nat. Photonics 8, 37 (2014)

    Article  ADS  Google Scholar 

  25. P. Dombi, A.Y. Elezzabi, in Attosecond Nanophysics, ed. by P. Hommelhoff, M. Kling (Wiley-VCH, Weinheim, 2015)

  26. C. Lienau, M. Raschke, C. Ropers, in Attosecond Nanophysics, ed. by P. Hommelhoff, M. Kling (Wiley-VCH, Weinheim, 2015)

  27. F. Süßmann, M.F. Kling, P. Hommelhoff, in Attosecond Nanophysics, ed. by P. Hommelhoff, M. Kling (Wiley-VCH, Weinheim, 2015)

  28. M. Krüger, M. Schenk, M. Förster, P. Hommelhoff, J. Phys. B 45, 074006 (2012)

    Article  ADS  Google Scholar 

  29. T. Higuchi, L. Maisenbacher, A. Liehl, P. Dombi, P. Hommelhoff, Appl. Phys. Lett. 106, 051109 (2015)

    Article  ADS  Google Scholar 

  30. P.B. Corkum, Phys. Rev. Lett. 71, 1994 (1993)

    Article  ADS  Google Scholar 

  31. M. Lewenstein, P. Balcou, M.Y. Ivanov, A. L’Huiller, P.B. Corkum, Phys. Rev. A 49, 2117 (1994)

    Article  ADS  Google Scholar 

  32. S.V. Yalunin, M. Gulde, C. Ropers, Phys. Rev. B 84, 195426 (2011)

    Article  ADS  Google Scholar 

  33. S.V. Yalunin, G. Herink, D.R. Solli, M. Krüger, P. Hommelhoff, M. Diehn, A. Munk, C. Ropers, Ann. Phys. 525, L12 (2013)

    Article  ADS  Google Scholar 

  34. H.G. Muller, P.H. Bucksbaum, D.W. Schumacher, A. Zavriyev, J. Phys. B At. Mol. Opt. Phys. 23, 2761 (1990)

    Article  ADS  Google Scholar 

  35. D.W. Schumacher, F. Weihe, H.G. Muller, P.H. Bucksbaum, Phys. Rev. Lett. 73, 1344 (1994)

    Article  ADS  Google Scholar 

  36. F. Ehlotzky, Phys. Rep. 345, 175 (2001)

    Article  ADS  Google Scholar 

  37. X. Xie, S. Roither, D. Kartashov, E. Persson, D.G. Arbó, L. Zhang, S. Gräfe, M.S. Schöffler, J. Burgdörfer, A. Baltuška, M. Kitzler, Phys. Rev. Lett. 108, 193004 (2012)

    Article  ADS  Google Scholar 

  38. S. Skruszewicz, J. Tiggesbäumker, K.-H. Meiwes-Broer, M. Arbeiter, T. Fennel, D. Bauer, Phys. Rev. Lett. 115, 043001 (2015)

    Article  ADS  Google Scholar 

  39. M. Förster, T. Paschen, M. Krüger, C. Lemell, G. Wachter, F. Libisch, T. Madlener, J. Burgdörfer, P. Hommelhoff, Phys. Rev. Lett. 117, 217601 (2016)

    Article  ADS  Google Scholar 

  40. C. Homann, M. Bradler, M. Förster, P. Hommelhoff, E. Riedle, Opt. Lett. 37, 1673 (2012)

    Article  ADS  Google Scholar 

  41. S. Ghimire, A.D. DiChiara, E. Sistrunk, P. Agostini, L.F. DiMauro, D.A. Reis, Nat. Phys. 7, 138 (2010)

    Article  Google Scholar 

  42. M. Hohenleutner, F. Langer, O. Schubert, M. Knorr, U. Huttner, S.W. Koch, M. Kira, R. Huber, Nature 523, 527 (2015)

    Article  Google Scholar 

  43. M. Schultze, E.M. Bothschafter, A. Sommer, S. Holzner, W. Schweinberger, M. Fiess, M. Hofstetter, R. Kienberger, V. Apalkov, V.S. Yakovlev, M.I. Stockman, F. Krausz, Nature 493, 75 (2013)

    Article  ADS  Google Scholar 

  44. M. Schultze, K. Ramasesha, C. Pemmaraju, S. Sato, D. Whitmore, A. Gandman, J.S. Prell, L.J. Borja, D. Prendergast, K. Yabana, D.M. Neumark, S.R. Leone, Science 346, 1348 (2014)

    Article  ADS  Google Scholar 

  45. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  46. T. Higuchi, C. Heide, K. Ullmann, H. B. Weber, P. Hommelhoff, arXiv:1607.04198 (2016)

  47. H.K. Kelardeh, V. Apalkov, M.I. Stockman, Phys. Rev. B 93, 155434 (2016)

    Article  ADS  Google Scholar 

  48. P. Ackermann, A. Scharf, T. Halfmann, Phys. Rev. A 89, 063804 (2014)

    Article  ADS  Google Scholar 

  49. P. Hommelhoff, C. Kealhofer, A. Aghajani-Talesh, Y.R. Sortais, S.M. Foreman, M.A. Kasevich, Ultramicroscopy 109, 423 (2009)

    Article  Google Scholar 

  50. T.W. Hänsch, Opt. Photonics News, 14 (2005)

  51. Superlaser123, Arthur L. Schawlow pops a balloon, https://www.youtube.com/watch?v=WCFRYpGoC98. Accessed 11 Aug 2016

  52. P. Hommelhoff, Y. Sortais, A. Aghajani-Talesh, M.A. Kasevich, Phys. Rev. Lett. 96, 077401 (2006)

    Article  ADS  Google Scholar 

  53. P. Hommelhoff, C. Kealhofer, M. A. Kasevich, in Proceedings of the 2006 IEEE International Frequency Control Symposium and Expositions, Vols 1 and 2, pp. 470–474 (2006)

  54. J. Hoffrogge, R. Fröhlich, M.A. Kasevich, P. Hommelhoff, Phys. Rev. Lett. 106, 193001 (2011)

    Article  ADS  Google Scholar 

  55. J. Breuer, P. Hommelhoff, Phys. Rev. Lett. 111, 134803 (2013)

    Article  ADS  Google Scholar 

  56. A. Ozawa, W. Schneider, T.W. Hänsch, T. Udem, P. Hommelhoff, New J. Phys. 11, 083029 (2009)

    Article  ADS  Google Scholar 

  57. A. Ozawa, W. Schneider, F. Najafi, T.W. Hänsch, T. Udem, P. Hommelhoff, Laser Phys. 20, 967 (2010)

    Article  ADS  Google Scholar 

  58. A. Ozawa, T. Udem, U.D. Zeitner, T.W. Hänsch, P. Hommelhoff, Phys. Rev. A 82, 033815 (2010)

    Article  ADS  Google Scholar 

  59. A. Vernaleken, J. Weitenberg, T. Sartorius, P. Russbueldt, W. Schneider, S.L. Stebbings, M.F. Kling, P. Hommelhoff, H.-D. Hoffmann, R. Poprawe, F. Krausz, T.W. Hänsch, T. Udem, Opt. Lett. 36, 3428 (2011)

    Article  ADS  Google Scholar 

  60. S. Thomas, R. Holzwarth, P. Hommelhoff, Opt. Exp. 20, 13663 (2012)

    Article  ADS  Google Scholar 

  61. A. Vernaleken, B. Schmidt, M. Wolferstetter, T.W. Hänsch, R. Holzwarth, P. Hommelhoff, Opt. Exp. 20, 18387 (2012)

    Article  ADS  Google Scholar 

  62. A. Vernaleken, B. Schmidt, T.W. Hänsch, R. Holzwarth, P. Hommelhoff, Appl. Phys. B 117, 33 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author acknowledges the many contributions of and is grateful to all past and current members of his group, in particular the long-time members Drs. Johannes Hoffrogge, Markus Schenk, Michael Krüger, John Breuer, Jakob Hammer, Sebastian Thomas, Michael Förster, Takuya Higuchi, Joshua McNeur and Martin Kozák. Funding from ERC (NearFieldAtto), SFB 953, SPP 1840 QUTIF and the Gordon and Betty Moore Foundation is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Hommelhoff.

Additional information

This article is part of the topical collection “Enlightening the World with the Laser” - Honoring T. W. Hänsch guest edited by Tilman Esslinger, Nathalie Picqué, and Thomas Udem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hommelhoff, P. Coherence in laser-driven electrons at the surface and in the volume of solid matter. Appl. Phys. B 123, 11 (2017). https://doi.org/10.1007/s00340-016-6586-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-016-6586-6

Keywords

Navigation