Skip to main content
Log in

Temperature and velocity determination of shock-heated flows with non-resonant heterodyne laser-induced thermal acoustics

  • Published:
Applied Physics B Aims and scope Submit manuscript

An Erratum to this article was published on 30 October 2015

Abstract

Non-resonant laser-induced thermal acoustics (LITA), a four-wave mixing technique, was applied to post-shock flows within a shock tube. Simultaneous single-shot determination of temperature, speed of sound and flow velocity behind incident and reflected shock waves at different pressure and temperature levels are presented. Measurements were performed non-intrusively and without any seeding. The paper describes the technique and outlines its advantages compared to more established laser-based methods with respect to the challenges of shock tube experiments. The experiments include argon and nitrogen as test gas at temperatures of up to 1000 K and pressures of up to 43 bar. The experimental data are compared to calculated values based on inviscid one-dimensional shock wave theory. The single-shot uncertainty of the technique is investigated for worst-case test conditions resulting in relative standard deviations of 1, 1.7 and 3.4 % for Mach number, speed of sound and temperature, respectively. For all further experimental conditions, calculated values stay well within the 95 % confidence intervals of the LITA measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Schlamp et al. [33] realized homodyne velocimetry via deliberate beam misalignments.

  2. An analog dependency can be found for supersonic flows by taking into account that both wave packages then travel in the same direction as the fluid.

References

  1. K. Itoh, S. Ueda, H. Tanno, T. Komuro, K. Sato, Shock Waves 12, 93 (2002). doi:10.1007/s00193-002-0147-0

    Article  ADS  Google Scholar 

  2. R.K. Hanson, D.F. Davidson, Prog. Energy Combust. 44, 103 (2014). doi:10.1016/j.pecs.2014.05.001

    Article  Google Scholar 

  3. S. Baab, G. Lamanna, B. Weigand, in 26th ILASS Americas in Portland, OR, USA, 2014 (2014)

  4. R. Hruschka, S. O’Byrne, H. Kleine, Exp. Fluids 51, 407 (2011). doi:10.1007/s00348-011-1039-9

    Article  Google Scholar 

  5. K.J. Irimpan, N. Mannil, H. Arya, V. Menezes, Measurement 61, 291 (2014). doi:10.1016/j.measurement.2014.10.056

    Article  Google Scholar 

  6. J.T.C. Liu, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 78, 503 (2004). doi:10.1007/s00340-003-1380-7

    Article  ADS  Google Scholar 

  7. A. Farooq, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 90, 619 (2008). doi:10.1007/s00340-007-2925-y

    Article  ADS  Google Scholar 

  8. B.K. McMillin, M.P. Lee, R.K. Hanson, AIAA J. 30, 436 (1992)

    Article  ADS  Google Scholar 

  9. J. Yoo, D. Mitchell, D.F. Davidson, R.K. Hanson, Exp. Fluids 49, 751 (2010). doi:10.1007/s00348-010-0876-2

    Article  Google Scholar 

  10. S. Zabeti, A. Drakon, S. Faust, T. Dreier, O. Welz, M. Fikri, C. Schulz, Appl. Phys. B 118, 295 (2015). doi:10.1007/s00340-014-5986-8

    Article  ADS  Google Scholar 

  11. D.R.N. Pulford, D.S. Newman, A.F.P. Houwing, R.J. Sandeman, Shock Waves 4, 119 (1994)

    Article  ADS  Google Scholar 

  12. W.R. Lempert, I.V. Adamovich, J. Phys. D: Appl. Phys. 47, 26 (2014). doi:10.1088/0022-3727/47/43/433001

  13. A. Farooq, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 96, 161 (2009). doi:10.1007/s00340-009-3446-7

    Article  ADS  Google Scholar 

  14. T. Seeger, A. Leipertz, Appl. Opt. 35(15), 2665 (1996). doi:10.1364/AO.35.002665

    Article  ADS  Google Scholar 

  15. A. Dreizler, T. Dreier, J. Wolfrum, Chem. Phys. Lett. 233, 525 (1995)

    Article  ADS  Google Scholar 

  16. P.H. Paul, R.L. Farrow, J. Opt. Soc. Am. B 12, 384 (1995)

    Article  ADS  Google Scholar 

  17. E.B. Cummings, I.A. Leyva, H.G. Hornung, Appl. Opt. 34, 3290 (1995)

    Article  ADS  Google Scholar 

  18. A. Stampanoni-Panariello, D.N. Kozlov, P.P. Radi, B. Hemmerling, Appl. Phys. B 81, 101 (2005). doi:10.1007/s00340-005-1825-z

    Article  ADS  Google Scholar 

  19. E.B. Cummings, Opt. Lett. 19, 1361 (1994)

    Article  ADS  Google Scholar 

  20. W. Hubschmid, R. Bombach, B. Hemmerling, A. Stampanoni-Panariello, Appl. Phys. B 62, 103 (1996)

    Article  ADS  Google Scholar 

  21. R.C. Hart, R.J. Balla, G.C. Herring, Appl. Opt. 38, 577–584 (1999)

  22. R. Stevens, P. Ewart, Appl. Phys. B 78, 111 (2004). doi:10.1007/s00340-003-1282-8

    Article  ADS  Google Scholar 

  23. D.N. Kozlov, Appl. Phys. B 80, 377 (2005). doi:10.1007/s00340-004-1720-2

    Article  ADS  Google Scholar 

  24. E.B. Cummings, H.G. Hornung, M.S. Brown, P.A. DeBarber, Opt. Lett. 20, 1577 (1995)

    Article  ADS  Google Scholar 

  25. S. Schlamp, H.G. Hornung, T.H. Sobota, E.B. Cummings, Appl. Opt. 39(30), 5477 (2000). doi:10.1364/AO.39.005477

    Article  ADS  Google Scholar 

  26. Y. Li, W.L. Romperts, M.S. Brown, AIAA J. 40(6), 1071 (2002). doi:10.2514/2.1790

    Article  ADS  Google Scholar 

  27. Y. Li, W.L. Roberts, M.S. Brown, J.R. Gord, Exp. Fluids 39, 687 (2005). doi:10.1007/s00348-005-1012-6

    Article  Google Scholar 

  28. S. Schlamp, T.H. Sobota, Exp. Fluids 32, 683 (2002). doi:10.1007/s00348-002-0419-6

    Article  Google Scholar 

  29. J. Kiefer, D.N. Kozlov, T. Seeger, A. Leipertz, J. Raman Spectrosc. 39, 711 (2008). doi:10.1002/jrs.1965

    Article  ADS  Google Scholar 

  30. B. Roshani, A. Flügel, I. Schmitz, D.N. Kozlov, T. Seeger, L. Zigan, J. Kiefer, A. Leipertz, J. Raman Spectrosc. 44, 1356 (2013). doi:10.1002/jrs.4315

    Article  ADS  Google Scholar 

  31. R.C. Hart, G.C. Herring, R.J. Balla, Opt. Lett. 32, 1689 (2007)

    Article  ADS  Google Scholar 

  32. H. Latzel, A. Dreizler, T. Dreier, J. Heinze, M. Dillmann, W. Stricker, G.M. Lloyd, P. Ewart, Appl. Phys. B 67, 667 (1998)

    Article  ADS  Google Scholar 

  33. S.Schlamp, E. Allen-Bradley, in 38th Aerospace Sciences Meeting & Exhibit (2000)

  34. M. Neracher, W. Hubschmid, Appl. Phys. B 79, 783 (2004). doi:10.1007/s00340-0014-1632-1

    Article  ADS  Google Scholar 

  35. C. Frazier, M. Lamnaouer, E. Divo, A. Kassab, E. Petersen, Shock Waves 21, 1 (2011). doi:10.1007/s00193-010-0282-y

    Article  ADS  Google Scholar 

  36. J. Jonuscheit, A. Thumann, M. Schenk, T. Seeger, A. Leipertz, Opt. Lett. 21, 1532 (1996)

    Article  ADS  Google Scholar 

  37. R. Stevens, P. Ewart, Opt. Lett. 31, 1055 (2006). doi:10.1364/OL.31.001055

  38. H. Li, A. Farooq, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 89, 407 (2007). doi:10.1007/s00340-007-2781-9

    Article  ADS  Google Scholar 

  39. M. Lackner, G. Totschnig, F. Winter, M. Ortsiefer, M.C. Amann, R. Shau, J. Rosskopf, Meas. Sci. Technol. 14, 101 (2003). doi:10.1088/0957-0233/14/1/315

    Article  ADS  Google Scholar 

  40. P. Wu, W.R. Lempert, R.B. Miles, AIAA J. 38(4), 672 (2000). doi:10.2514/2.1009

    Article  ADS  Google Scholar 

  41. B. Thurow, N. Jiang, M. Samimy, W.R. Lempert, Appl. Opt. 43(20), 5064 (2004). doi:10.1364/AO.43.005064

    Article  ADS  Google Scholar 

  42. W.D. Kulatilaka, J.R. Gord, S. Roy, Appl. Phys. B 116, 7 (2014). doi:10.1007/s00340-014-5845-7

    Article  ADS  Google Scholar 

  43. P.J. Trunk, I. Boxx, C. Heeger, W. Meier, B. Böhm, A. Dreizler, P. Combust, Inst 34, 3565 (2013). doi:10.1016/j.proci.2012.06.025

    Google Scholar 

  44. J.D. Miller, S. Roy, M.N. Slipchenko, J.R. Gord, T.R. Meyer, Opt. Express 19(16), 15627 (2011). doi:10.1364/OE.19.015627

    Article  ADS  Google Scholar 

  45. S.P. Kearney, D.J. Scoglietti, C.J. Kliewer, Opt. Express 21(10), 12327 (2013). doi:10.1364/OE.21.012327

    Article  ADS  Google Scholar 

  46. S. O’Byrne, P.M. Danehy, S.A. Tedder, A.D. Cutler, AIAA J. 45, 922 (2007). doi:10.2514/1.26768

    Article  ADS  Google Scholar 

  47. B. Hiller, R.K. Hanson, Appl. Opt. 27(1), 33 (1988). doi:10.1364/AO.27.000033

    Article  ADS  Google Scholar 

  48. A.D. Cutler, G. Magnotti, J. Raman Spectrosc. 42, 1949 (2011). doi:10.1002/jrs.2948

    Article  ADS  Google Scholar 

  49. B. Hemmerling, M. Neracher, D. Kozlov, W. Kwan, R. Stark, D. Klimenko, W. Clauss, M. Oschwald, J Raman Spectrosc 33, 912 (2002). doi:10.1002/jrs.946

    Article  ADS  Google Scholar 

  50. B. Williams, M. Edwards, R. Stone, J. Williams, P. Ewart, Combust. Flame 161, 270 (2014). doi:10.1016/j.combustflame.2013.07.018

    Article  Google Scholar 

  51. F.J. Förster, B. Weigand, in 19th AIAA Hypersonics in Atlanta , vol. 2014 (GE, USA, 2014)

  52. G. C.Herring, F. Meyers, R.C. Hart, Meas. Sci. Technol. 20 (2009). doi:10.1088/0957-0233/20/4/045304

  53. T. Mizukaki, T. Matsuzawa, Shock Waves 19, 361 (2009). doi:10.1007/s00193-009-028-6

    Article  ADS  Google Scholar 

  54. T. Sander, P. Altenhoefer, C. Mundt, AIAA J. (2015). doi:10.2514/1.T4556

  55. S. Schlamp, T. Rösgen, D.N. Kozlov, C. Rakut, P. Kasal, J. von Wolfersdorf, J. Propul. Power 21, 1008 (2005)

    Article  Google Scholar 

  56. I. Stotz, G. Lamanna, H. Hettrich, B. Weigand, J. Steelant, Rev. Sci. Instrum. 79 (2008). doi:10.1063/1.3058609

  57. H. Oertel, Stossrohre (Springer, New York, 1966)

    Google Scholar 

  58. S. Rozouvan, T. Dreier, Opt. Lett. 24(22), 1596 (1999). doi:10.1364/OL.24.001596

    Article  ADS  Google Scholar 

  59. Thorlabs, APD110x Series Avalanche Photodetectors (2011)

  60. R. Fowler, E. Guggenheim, Statistical Thermodynamics (Cambridge University Press, Cambridge, 1960)

    Google Scholar 

  61. R.J. Balla, C.A. Miller, Nasa TechReport 2008-215327 (2008)

  62. J. Gurland, R.C. Tripathi, Am. Stat. 25(4), 30 (1971)

    Google Scholar 

  63. E. Cummings, Laser-induced thermal acoustics. Ph.D. thesis, California Institute of Technology (1995)

  64. P. Danehy, Population- and thermal-grating contributions to degenerate four-wave mixing. Ph.D. thesis, Dept. of Mech.Eng., Stanford Univ. (1995)

Download references

Acknowledgments

This work was performed within the framework of the Transregio 40 “Technological foundations for the design of thermally and mechanically highly loaded components of future space transportation systems” and the GRK 1095/2 “Aero-Thermodynamic Design of a SCRamjet Propulsion System for Future Space Transportation Systems.” The authors would like to thank the German Research Foundation (DFG) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. J. Förster.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Förster, F.J., Baab, S., Lamanna, G. et al. Temperature and velocity determination of shock-heated flows with non-resonant heterodyne laser-induced thermal acoustics. Appl. Phys. B 121, 235–248 (2015). https://doi.org/10.1007/s00340-015-6217-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-015-6217-7

Keywords

Navigation