Skip to main content
Log in

On treatment of ultra-low-k SiCOH in CF4 plasmas: correlation between the concentration of etching products and etching rate

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Low-pressure rf plasmas have been applied for etching of ultra-low-k SiCOH wafers using an Oxford Plasmalab System 100. In pure CF4 plasmas, SiCOH layers have been etched for different power values. Using quantum cascade laser absorption spectroscopy in the mid-infrared spectral range, the correlation of online and in situ measured concentrations of two etching products, CO and SiF4, with the ex situ determined etching rates has been studied. The concentration of SiF4 was found to range between 0.6 and 1.4 × 1013 molecules cm−3. In contrast the concentrations of CO were measured to be only about 50 % of the SiF4 density with 7 × 1012 molecules cm−3 in maximum. The production rate of SiF4, determined from the time behavior of its concentration after plasma ignition, was found to be between 1 and 5 × 1012 cm−3 s−1. The etching rates varied between 2 and 7 nm s−1. Both parameters increase nearly linearly with the applied rf power. It was found that for power values of up to 1.1 kW, the etching rate depends nearly linearly on the in situ monitored concentrations of both etching products. Therefore, the concentration of the etching products can be directly used as a measure of the etching rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K. Maex, M.R. Baklanov, D. Shamiryan, F. Iacopi, S.H. Brongersma, Z.S. Yanovitskaya, J. Appl. Phys. 93, 8793 (2003)

    Article  ADS  Google Scholar 

  2. C. Ye, Y. Xu, X. Huang, Z. Ning, Thin Solid Films 518, 3223 (2010)

    Article  ADS  Google Scholar 

  3. G. Shi, C. Ye, Y. Xu, H. Huang, Y. Yuan, Z. Ning, Plasma Sci. Technol. 12, 437 (2010)

    Article  ADS  Google Scholar 

  4. C. Wyon, Eur. Phys. J. Appl. Phys. 49, 20101 (2010)

    Article  Google Scholar 

  5. H.L. Xin, P. Ercius, K.J. Hughes, J.R. Engstrom, D.A. Muller, Appl. Phys. Lett. 96, 223108 (2010)

    Article  ADS  Google Scholar 

  6. B.-S. Kwon, H.-L. Lee, J. Korean Phys. Soc. 62, 67 (2013)

    Article  ADS  Google Scholar 

  7. J. Shoeb, M.J. Kushner, IEEE Trans. Plasma Sci. 39, 2828 (2011)

    Article  ADS  Google Scholar 

  8. J. Shoeb, M.J. Kushner, J. Vac. Sci. Technol. A 30, 041304 (2012)

    Article  Google Scholar 

  9. J. Shoeb, M.W. Wang, M.J. Kushner, J. Vac. Sci. Technol. A 30, 041303-1 (2012)

    Google Scholar 

  10. A. Grill, S.M. Gates, T.E. Ryan, S.V. Nguyen, D. Priyadarshini, Appl. Phys. Rev. 1, 011306 (2014)

    Article  ADS  Google Scholar 

  11. J.P. Booth, H. Abada, P. Chabert, D.B. Graves, Plasma Sources Sci. Technol. 14, 273 (2005)

    Article  ADS  Google Scholar 

  12. B. McMillin, M.R. Zachariah, J. Vac. Sci. Technol. A 15, 230 (1997)

    Article  ADS  Google Scholar 

  13. J. Wormhoudt, J. Vac. Sci. Technol. A 8, 1722 (1990)

    Article  ADS  Google Scholar 

  14. K. Maruyama, A. Sakai, T. Goto, J. Phys. D Appl. Phys. 26, 199 (1993)

    Article  ADS  Google Scholar 

  15. K. Takahashi, M. Hori, K. Maruyama, S. Kishimoto, T. Goto, Jpn. J. Appl. Phys. 32, 694 (1993)

    Article  ADS  Google Scholar 

  16. H.C. Sun, V. Patel, E.A. Whittaker, B. Singh, J.H. Thomas, J. Vac. Sci. Technol. A 11, 1193 (1993)

    Article  ADS  Google Scholar 

  17. K. Maruyama, K. Ohkouchi, Y. Ohtsu, T. Goto, Jpn. J. Appl. Phys. 33, 4298 (1994)

    Article  ADS  Google Scholar 

  18. M. Haverlag, E. Stoffels, W.W. Stoffels, G.M.W. Kroesen, F.J. De Hoog, J. Vac. Sci. Technol. A 12, 3102 (1994)

    Article  ADS  Google Scholar 

  19. K. Miyata, K. Takahashi, S. Kishimoto, M. Hori, T. Goto, Jpn. J. Appl. Phys. 34, 444 (1995)

    Article  ADS  Google Scholar 

  20. K. Maruyama, K. Ohkouchi, T. Goto, Jpn. J. Appl. Phys. 35, 4088 (1996)

    Article  ADS  Google Scholar 

  21. T. Goto, M. Hori, Jpn. J. Appl. Phys. 35, 6521 (1996)

    Article  ADS  Google Scholar 

  22. M. Haverlag, E. Stoffels, W.W. Stoffels, G.M.W. Kroesen, F.J. De Hoog, J. Vac. Sci. Technol. A 14, 380 (1996)

    Article  ADS  Google Scholar 

  23. O. Gabriel, S. Stepanov, M. Pfafferot, J. Meichsner, Plasma Source Sci. Technol. 15, 858 (2006)

    Article  ADS  Google Scholar 

  24. M. Hori, T. Goto, Plasma Sources Sci. Technol. 15, S74 (2006)

    Article  ADS  Google Scholar 

  25. D.B. Oh, A.C. Stanton, H.M. Anderson, M.P. Splichal, J. Vac. Sci. Technol. B 13, 954 (1995)

    Article  Google Scholar 

  26. J. Röpcke, P.B. Davies, N. Lang, A. Rousseau, S. Welzel, J. Phys. D Appl. Phys. 45, 423001 (2012)

    Article  Google Scholar 

  27. G.D. Stancu, N. Lang, J. Röpcke, M. Reinicke, A. Steinbach, S. Wege, Chem. Vap. Depos. 13, 351 (2007)

    Article  Google Scholar 

  28. S. Welzel, S. Stepanov, J. Meichsner, J. Röpcke, J. Phys. D Appl. Phys. 43, 124014 (2010)

    Article  ADS  Google Scholar 

  29. N. Lang, J. Röpcke, A. Steinbach, S. Wege, IEEE Trans. Plasma Sci. 37, 2335 (2009)

    Article  ADS  Google Scholar 

  30. N. Lang, J. Röpcke, S. Wege, A. Steinbach, Eur. Phys. J. Appl. Phys. 49, 13110 (2010)

    Article  ADS  Google Scholar 

  31. S. Zimmermann, N. Ahner, F. Blaschta, M. Schaller, H. Zimmermann, H. Rülke, N. Lang, J. Röpcke, S.E. Schulz, T. Gessner, Microelectr. Eng. 88, 671 (2011)

    Article  Google Scholar 

  32. L.S. Rothman, I.E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P.F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L.R. Brown, A. Campargue, K. Chance, E.A. Cohen, L.H. Coudert, V.M. Devi, B.J. Drouin, A. Fayt, J.-M. Flaud, R.R. Gamache, J.J. Harrison, J.-M. Hartmann, C. Hill, J.T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R.J. Le Roy, G. Li, D.A. Long, O.M. Lyulin, C.J. Mackie, S.T. Massie, S. Mikhailenko, H.S.P. Müller, O.V. Naumenko, A.V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E.R. Polovtseva, C. Richard, M.A.H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G.C. Toon, V.G. Tyuterev, G. Wagner, J. Quant. Spectrosc. Radiat. Transf. 130, 4 (2013)

    Article  ADS  Google Scholar 

  33. H.C. Sun, V. Patel, B. Singh, C.K. Ng, E.A. Whittaker, Appl. Phys. Lett. 64, 2779 (1994)

    Article  ADS  Google Scholar 

  34. F. Hempel, N. Lang, H. Zimmermann, S. Strämke, J. Röpcke, Meas. Sci. Technol. 21, 085703 (2010)

    Article  ADS  Google Scholar 

  35. G. Hancock, S.J. Horrocks, G.A.D. Ritchie, J.H. van Helden, R.J. Walker, J. Phys. Chem. A 112, 9751 (2008)

    Article  Google Scholar 

  36. S. Welzel, S. Stepanov, J. Meichsner, J. Röpcke, J. Phys. Conf. Ser. 157, 012010 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The project described in this publication has been funded in line with the technology funding for regional development (ERDF) of the European Union and by funds of the Free State of Saxony, Germany. F. Weichbrodt is acknowledged for his continuous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Lang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lang, N., Zimmermann, S., Zimmermann, H. et al. On treatment of ultra-low-k SiCOH in CF4 plasmas: correlation between the concentration of etching products and etching rate. Appl. Phys. B 119, 219–226 (2015). https://doi.org/10.1007/s00340-015-6063-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-015-6063-7

Keywords

Navigation