Skip to main content
Log in

Real-time contour fringes obtained with a variable synthetic wavelength from a single diode laser

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this work, we present a method to generate digital speckle contour fringes by tuning a red diode laser with a single external cavity. In the cavity, light is reflected by a diffraction grating and re-injected into the emitter. A proper alignment of the cavity provides dual emission of the laser, thus generating a synthetic wavelength λ S. The resulting image of the studied object appears covered with the usual high spatial frequency speckle pattern modulated by a low-frequency interferogram of contour interval λ S/2 which describes the object surface shape. Changes in the separation between the two laser emissions correspond to an extended range of synthetic wavelengths ranging from tens of micrometers to some millimeters. In the experimental section we demonstrate the potential of this technique by changing the contour interval of the interferogram according to the object’s shape and to the desired measurement precision. An analytical expression relating the interferogram intensity with the Fourier transform of the laser output intensity was obtained, and possible applications of this result for wavefront shaping are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P.J. de Groot, Appl. Opt. 33, 5948 (1994)

    Article  ADS  Google Scholar 

  2. J.C. Wyant, Appl. Opt. 23, 4539 (1984)

    Article  ADS  Google Scholar 

  3. K. Creath, Appl. Opt. 26, 2810 (1987)

    Article  ADS  Google Scholar 

  4. A.T. Forrester, W.E. Parkins, E. Gerjuoy, Phys. Rev. 72, 728 (1947)

    Article  ADS  Google Scholar 

  5. K.A. Hildebrand, B. P. and Haines. Phys. Lett. 21, 422 (1966)

    Article  ADS  Google Scholar 

  6. N. Shiotake, T. Tsuruta, Y. Itoh, J. Tsujiuchi, N. Takeya, K. Matsuda, Jpn. J. Appl. Phys. 7, 904 (1968)

    Article  ADS  Google Scholar 

  7. P. Ferraro, L. Miccio, S. Grilli, M. Paturzo, S. De Nicola, A. Finizio, R. Osellame, P. Laporta, Opt. Express 15, 14591 (2007)

    Article  ADS  Google Scholar 

  8. T. Maack, G. Notni, W. Schreiber, Opt. Commun. 115, 576 (1995)

    Article  ADS  Google Scholar 

  9. A. Wada, M. Kato, Y. Ishii, Appl. Opt. 47, 2053 (2008)

    Article  ADS  Google Scholar 

  10. Y. Zou, H. Diao, X. Peng, H. Tiziani, Appl. Opt. 31, 6616 (1992)

    Article  ADS  Google Scholar 

  11. C. Wagner, W. Osten, S. Seebacher, Opt. Eng. 39, 79 (2000)

    Article  ADS  Google Scholar 

  12. K. Alzahrani, D. Burton, F. Lilley, M. Gdeisat, F. Bezombes, M. Qudeisat, Opt. Express 20, 5658 (2012)

    Article  ADS  Google Scholar 

  13. A.F. Fercher, H.Z. Hu, U. Vry, Appl. Opt. 24, 2181 (1985)

    Article  ADS  Google Scholar 

  14. D.M. Silva, E.A. Barbosa, N.U. Wetter, Rev. Sci. Instrum. 83, 103103 (2012)

    Article  ADS  Google Scholar 

  15. E.A. Barbosa, D.M. Silva, C.E. Nascimento, F.L. Galvão, J.C.R. Mittani, Opt. Lasers Eng. 51, 898 (2013)

    Article  Google Scholar 

  16. N.U. Wetter, Appl. Phys. B 86, 515 (2006)

    Article  ADS  Google Scholar 

  17. M. Fleming, A. Mooradian, IEEE J. Quantum Electron. 17, 44 (1981)

    Article  ADS  Google Scholar 

  18. E. Hack, B. Frei, R. Ka, U. Sennhauser, Appl. Opt. 37, 2591 (1998)

    Article  ADS  Google Scholar 

  19. M.G. Littman, H.J. Metcalf, Appl. Opt. 17, 2224 (1978)

    Article  ADS  Google Scholar 

  20. W.E.J. Lamb Jr, Phys. Rev. 134, A1429–A1450 (1964)

    Article  ADS  Google Scholar 

  21. E.A. Barbosa, Appl. Phys. B 80, 345 (2005)

    Article  ADS  Google Scholar 

  22. E.A. Barbosa, A.C.L. Lino, Appl. Opt. 46, 2624 (2007)

    Article  ADS  Google Scholar 

  23. E.A. Barbosa, Opt. Express 18, 8743 (2010)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danilo Mariano da Silva.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (AVI 4903 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, D.M., Barbosa, E.A., Cardoso, G.C. et al. Real-time contour fringes obtained with a variable synthetic wavelength from a single diode laser. Appl. Phys. B 118, 159–166 (2015). https://doi.org/10.1007/s00340-014-5965-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-014-5965-0

Keywords

Navigation