Skip to main content
Log in

A new spatially scanning 2.7 µm laser hygrometer and new small-scale wind tunnel for direct analysis of the H2O boundary layer structure at single plant leaves

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A new spatially scanning TDLAS in situ hygrometer based on a 2.7-µm DFB diode laser was constructed and used to analyse the water vapour concentration boundary layer structure at the surface of a single plant leaf. Using an absorption length of only 5.4 cm, the TDLAS hygrometer permits a H2O vapour concentration resolution of 31 ppmv. This corresponds to a normalized precision of 1.7 ppm m. In order to preserve and control the H2O boundary layer on an individual leaf and to study the boundary layer dependence on the wind speed to which the leaf might be exposed in nature, we also constructed a new, application specific, small-scale, wind tunnel for individual plant leaves. The rectangular, closed-loop tunnel has overall dimensions of 1.2 × 0.6 m and a measurement chamber dimension of 40  × 54 mm (H × W). It allows to generate a laminar flow with a precisely controlled wind speed at the plant leaf surface. Combining honeycombs and a miniaturized compression orifice, we could generate and control stable wind speeds from 0.1 to 0.9 m/s, and a highly laminar and homogeneous flow with an excellent relative spatial homogeneity of 0.969 ± 0.03. Combining the spectrometer and the wind tunnel, we analysed (for the first time) non-invasively the wind speed-dependent vertical structure of the H2O vapour distribution within the boundary layer of a single plant leaf. Using our time-lag-free data acquisition procedure for phase locked signal averaging, we achieved a temporal resolution of 0.2 s for an individual spatial point, while a complete vertical spatial scan at a spatial resolution of 0.18 mm took 77 s. The boundary layer thickness was found to decrease from 6.7  to 3.6 mm at increasing wind speeds of 0.1–0.9 m/s. According to our knowledge, this is the first experimental quantification of wind speed-dependent H2O vapour boundary layer concentration profiles of single plant leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Alistair, F. Hetherington, F.I. Woodward, The role of stomata in sensing and driving environmental change. Nature 424, 901–908 (2003)

    Article  ADS  Google Scholar 

  2. W. Cramer, A. Bondeau, F.I. Woodward, I.C. Prentice, R.A. Betts, V. Brovkin, P.M. Cox, V. Fisher, J. Foley, A.D. Friend, C. Kucharik, M.R. Lomas, N. Ramankutty, S. Sitch, B. Smith, A. White, C. Young-Molling, Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Glob. Change Biol. 7, 357–373 (2001)

    Article  Google Scholar 

  3. D. Gerten, S. Schaphoff, W. Lucht, Clim. Change 80, 277–299 (2007)

    Article  Google Scholar 

  4. P.S. Nobel, Physiochemical and environmental plant physiology (Academic Press, USA, 2005)

    Google Scholar 

  5. D.D. Baldocchi, Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Glob. Change Biol. 9, 479–492 (2003)

    Article  Google Scholar 

  6. U. Schreiber, H. Hormann, C. Neubauer, C. Klughammer, Assessment of photosystem ii photochemical quantum yield by chlorophyll fluorescence quenching analysis. Aust. J. Plant Physiol. 22, 209–220 (1995)

    Article  Google Scholar 

  7. U. Rascher, R. Pieruschka, Spatio-temporal variations of photosynthesis: the potential of optical remote sensing to better understand and scale light use efficiency and stresses of plant ecosystems. Precis. Agric. 9, 355–366 (2008)

    Article  Google Scholar 

  8. R. Pieruschka, D. Klimov, Z. Kolber, J.A. Berry, Continuous measurements of the effects of cold stress on photochemical efficiency using laser induced fluorescence transient (LIFT) approach. Funct. Plant Biol. 37, 395–402 (2010)

    Article  Google Scholar 

  9. A. Damm, J. Elbers, A. Erler, B. Gioli, K. Hamdi, R. Hutjes, M. Kosvancova, M. Meroni, F. Miglietta, A. Moersch, J. Moreno, A. Schickling, R. Sonnenschein, T. Udelhoven, S. van der Linden, P. Hostert, U. Rascher, Remote sensing of sun-induced fluorescence to improve modeling of diurnal courses of gross primary production (GPP). Glob. Change Biol. 16, 171–186 (2010)

    Article  Google Scholar 

  10. E.-D. Schulze, M.M. Caldwell, Ecophysiology of photosynthesis. Ecological Studies, 100 (Springer Berlin, Heidelberg, 1995)

    Google Scholar 

  11. J.C. Shope, D. Peak, K.A. Mott, Stomatal responses to humidity in isolated epidermes. Plant Cell Environ. 31, 1290–1298 (2008)

    Article  Google Scholar 

  12. R. Pieruschka, G. Huber, and J. A. Berry, “Control of transpiration by radiation,” in: Proceedings of the National Academy of Sciences 107, (2010)

  13. U. Schurr, A. Walter, U. Rascher, Functional dynamics of plant growth and photosynthesis—from steady-state to dynamics—from homogeneity to heterogeneity. Plant Cell Environ. 29, 340–352 (2006)

    Article  Google Scholar 

  14. J. Grace, J. Wilson, The boundary layer over a Populus Leaf. J. Exp. Bot. 27, 231–241 (1975)

    Article  Google Scholar 

  15. J.R. Troyer, Diffusion from a circular stoma through a boundary layer—a field theoretical analysis. Plant Physiol. 66, 250–253 (1980)

    Article  Google Scholar 

  16. P.H. Schuepp, Tansley review no. 59 Leaf boundary layers. New Phytol. 125, 477–507 (2006)

    Article  Google Scholar 

  17. O.L. Lange, R. Rösch, E.D. Schulze, L. Kappen, Responses of stomata to changes in humidity. Planta 100, 76–86 (1971)

    Article  Google Scholar 

  18. L. Fanjul, H.G. Jones, Rapid stomatal responses to humidity. Planta 154, 135–138 (1982)

    Article  Google Scholar 

  19. K. Wunderle, S. Wagner, and V. Ebert, “2.7 µm DFB Diode Laser Spectrometer for Sensitive Spatially Resolved H2O Vapor Detection,” in LACSEA, 2008)

  20. S. Hunsmann, Fasergekoppelte Mehrkanal-Laser-Hygrometer zur in situ Messung der globalen und lokalen Transpirationsdynamik einzelner Pflanzenblätter (Universität Heidelberg, Physikalisch-Chemisches Institut, 2009)

    Google Scholar 

  21. S. Hunsmann, K. Wunderle, S. Wagner, U. Rascher, U. Schurr, V. Ebert, High resolution measurements of absolute water transpiration rates from plant leaves via 1.37 µM tunable diode laser absorption spectroscopy (TDLAS). Appl. Phys. B 92, 393–401 (2008)

    Article  ADS  Google Scholar 

  22. M. Hümmer, K. Rößsner, T. Lehnhardt, M. Müller, A. Forchel, R. Werner, M. Fischer, J. Koeth, Long wavelength GaInAsSb-AlGaAsSb distributed-feedback lasers emitting at 2.84 µm. Electron Lett. 42, 583–584 (2006)

    Article  Google Scholar 

  23. A. Farooq, J.B. Jeffries, R.K. Hanson, In situ combustion measurements of H2O and temperature near 2.5 μm using tunable diode laser absorption. Meas. Sci. Technol. 19, 075604 (2008)

    Article  ADS  Google Scholar 

  24. C.G. Tarsitano, C.R. Webster, Multilaser Herriott cell for planetary tunable laser spectrometers. Appl. Opt. 46, 6923–6935 (2007)

    Article  ADS  Google Scholar 

  25. G. Durry, J.S. Li, I. Vinogradov, A. Titov, L. Joly, J. Cousin, T. Decarpenterie, N. Amarouche, X. Liu, B. Parvitte, O. Korablev, M. Gerasimov, V. Zeninari, “Near infrared diode laser spectroscopy of C2H2, H2O, CO2 and their isotopologues and the application to TDLAS, a tunable diode laser spectrometer for the martian PHOBOS-GRUNT space mission,”. Appl. Phys. B 99, 339–351 (2010)

    Article  ADS  Google Scholar 

  26. G. Durry, L. Joly, T. Le Barbu, B. Parvitte, V. Zéninari, Laser diode spectroscopy of the H2O isotopologues in the 2.64 micron region for the in situ monitoring of the Martian atmosphere. Infrared Phys. Technol. 51, 229–235 (2008)

    Article  ADS  Google Scholar 

  27. J.A. Berry, D.J. Beerling, P.J. Franks, Stomata: key players in the earth system, past and present. Curr. Opin. Plant Biol. 13, 232–239 (2010)

    Article  Google Scholar 

  28. J.T. Ball, I.E. Woodrow, J.A. Berry, “A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions,” in Progress in Photosynthesis Research, vol. IV (Martimis Nijhoff Publishers, Dordrecht, 1987), pp. 221–224

    Google Scholar 

  29. D. Niyogi, K. Alapaty, S. Raman, F. Chen, Development and evaluation of a coupled photosynthesis-based gas exchange evapotranspiration model (GEM) for mesoscale weather forecasting applications. J. Appl. Meteorol. Climatol. 48, 349–368 (2009)

    Article  ADS  Google Scholar 

  30. P.G. Jarvis, K.G. McNaughton, Stomatal control of transpiration: scaling up from leaf to region. Adv. Ecol. Res. 15, 1–49 (1986)

    Article  Google Scholar 

  31. J.A. Berry, D.J. Beerling, P.J. Franks, Stomata: key players in the earth system, past and present. Curr. Opin. Plant Biol. 13, 232–239 (2010)

    Article  Google Scholar 

  32. L. Galatry, Simultaneous effect of Doppler and Foreign Gastions of broadening on spectral lines. Phys. Rev. 122, 1218–1223 (1961)

    Article  ADS  MATH  Google Scholar 

  33. S.G. Rautian, I.C. Sobel’man, The effect of collisions on the Doppler broadening of spectral lines. Sov. Phys. Usp. 9, 701–716 (1967)

    Article  ADS  Google Scholar 

  34. B.H. Armstrong, Spectrum line profiles: the Voigt function. J. Quant. Spectrosc. Radiat. Transf. 7, 61–88 (1967)

    Article  ADS  Google Scholar 

  35. K. Wunderle, T. Fernholz, V. Ebert, Selektion optimaler Absorptionslinien für abstimmbare Laserabsorptionsspektrometer. VDI Ber. 1959, 137–148 (2006)

    Google Scholar 

  36. L.S. Rothman, D. Jacquemart, A. Barbe, D.C. Benner, M. Birk, L.R. Brown, M.R. Carleer, J. Chackerian, K. Chance, L.H. Coudert, V. Dana, V.M. Devi, J.M. Flaud, R.R. Gamache, A. Goldman, J.M. Hartmann, K.W. Jucks, A.G. Maki, J.Y. Mandin, S.T. Massie, J. Orphal, A. Perrin, C.P. Rinsland, M.A.H. Smith, J. Tennyson, R.N. Tolchenov, R.A. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, “The HITRAN 2004 molecular spectroscopic database,”. J. Quant. Spectrosc. Radiat. Transf. 96, 139–204 (2005)

    Article  ADS  Google Scholar 

  37. K. Wunderle, “Neuartige Konzepte zur schnellen, räumlich aufgelösten Untersuchung der H2O-Grenzschichtdynamik einzelner Pflanzenblätter und ihrer Abhängigkeit von der Windgeschwindigkeit auf Basis hochempfindlicher 2.7 µm-Laserhygrometer,” Ph.D. Thesis, University of Heidelberg, 2010

  38. K. Wunderle, S. Wagner, I. Pasti, R. Pieruschka, U. Rascher, U. Schurr, V. Ebert, Distributed feedback diode laser spectrometer at 2.7 µm for sensitive, spatially resolved H2O vapor detection. Appl. Opt. 48, B172–B182 (2009)

    Article  ADS  Google Scholar 

  39. H. Teichert, “Entwicklung und Einsatz von Diodenlaser-Spektrometern zur simultanen in situ-Detektion von CO, O2 und H2O in technischen Verbrennungsprozessen,” Dissertation, Ruprecht-Karls Universität, Physikalisch-Chemisches Institut, 2003

  40. S. Wagner, B. T. Fisher, J. W. Fleming, and V. Ebert, “TDLAS based In Situ Measurement of Absolute Acetylene Concentrations in Laminar 2D Diffusion Flames,” Proc. Comb. Inst. 32, available online http://dx.doi.org/10.1016/j.proci.2008.05.087 (2008)

  41. V. Ebert, H. Teichert, P. Strauch, T. Kolb, H. Seifert, J. Wolfrum, Sensitive in situ detection of CO and O2 in a rotary kiln-based hazardous waste incinerator using 760 nm and new 2.3 µm diode lasers. Proc. Comb. Inst. 30, 1611–1618 (2005)

    Article  Google Scholar 

  42. M.J. Martin, K.J. Scavazze, I.D. Boyd, L.P. Bernal, Design of a low-turbulence, low-pressure wind-tunnel for micro-aerodyamics. J. Fluids Eng. 128, 1045–1052 (2006)

    Article  Google Scholar 

  43. D.W. Scott, On optimal and data-based histograms. Biometrika 66, 606–610 (1976)

    Google Scholar 

  44. M.-T. Hütt, R. Neff, Quantification of spatiotemporal phenomena by means of cellular automata techniques. Phys. A 289, 498–516 (2001)

    Article  MATH  Google Scholar 

  45. S. Hunsmann, K. Wunderle, S. Wagner, U. Rascher, U. Schurr, V. Ebert, High resolution measurements of absolute water transpiration rates from plant leaves via 1.37 µM tunable diode laser absorption spectroscopy (TDLAS). Appl. Phys. B 92, 393–401 (2008)

    Article  ADS  Google Scholar 

  46. R. G. Compton, C. E. Banks, Understanding Voltammetry, (World Scientific Pub Co, 2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Wunderle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wunderle, K., Rascher, U., Pieruschka, R. et al. A new spatially scanning 2.7 µm laser hygrometer and new small-scale wind tunnel for direct analysis of the H2O boundary layer structure at single plant leaves. Appl. Phys. B 118, 11–21 (2015). https://doi.org/10.1007/s00340-014-5948-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-014-5948-1

Keywords

Navigation