Skip to main content
Log in

Temperature stability and improved energy storage efficiency of BaBi2Nb2O9: Er3+/Yb3+ relaxor ferroelectric ceramic under moderate electric fields

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, undoped BaBi2−x−yNb2ErxYbyO9 (BBN), Er3+ doped BBN, and a series of Er3+/Yb3+ co-doped BBN ferroelectric ceramic is synthesized by the solid-state method to study the structural, dielectric, ferroelectric, and energy storage behavior of the prepared ceramic. XRD spectra revealed orthorhombic geometry and Fmmm phase group of each prepared ceramic. SEM micrograph shows dense microstructures similar to square-shaped structures. Two FTIR bands at 619 and 822 cm−1 are observed, displaying the characteristic peaks of the Aurivillius phase. Four Raman bands are detected for undoped BBN, while twelve are visible in Er3+/Yb3+ doped BBN compositions. Further, this work utilizes a comparable method to correlate Nb–O stretching frequencies with their corresponding bond lengths using Herschbach’s exponential function. Temperature-dependent dielectric studies show considerable dispersion below and above maximum temperature (Tm), and the dielectric constant (εʹ) decreases with an increase in frequency. The dielectric loss (ɛʺ) curves are quite diffused, and shifts in the maxima with frequency have been observed, thus validating the relaxor behavior of all the prepared BBN compositions. The slimmer PE curves were obtained under moderate electric fields ranging from 75 to 100 kV/cm. The energy storage parameters (W, Wrec, η) are improved with increasing applied electric field. The energy storage efficiency (η) obtained for undoped, Er3+ doped, and Er3+/Yb3+ co-doped BBN ceramics are 78.25%, 83.39%, and 90.87%, respectively. The energy storage parameters revealed good temperature stability from 303 to 415 K, indicating that the synthesized material might aid in developing modern electronic equipment for energy storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The authors mentioned above have all the relevant data associated with this research work and will be dedicated to sharing that if they are asked to do so in the future.

References

  1. J. Shi, X. Liu, W. Tian, High energy-storage properties of Bi0.5Na0.5TiO3–BaTiO3–SrTi0.875Nb0.1O3 lead-free relaxor ferroelectrics. J. Mater. Sci. Technol. 34(12), 2371–2374 (2018). https://doi.org/10.1016/j.jmst.2018.06.008

    Article  Google Scholar 

  2. A. Manan, S. Khan, A. Ullah, A.S. Ahmad, Y. Iqbal, I. Qazi, A. Ullah, Z. Yao, H. Liu, H. Hao, M.A. Khan, M.U. Rehman, Improved energy storage characteristic of Yb doped 0.98(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-0.02BiAlO3 ceramics. Mater. Res. Bull. 137, 111175 (2021). https://doi.org/10.1016/j.materresbull.2020.111175

    Article  Google Scholar 

  3. Z. Peng, L. Chen, Y. Xiang, F. Cao, Microstructure and electrical properties of lanthanides-doped CaBi2Nb2O9 ceramics. Mater. Res. Bull. 148, 111670 (2022). https://doi.org/10.1016/j.materresbull.2021.111670

    Article  Google Scholar 

  4. Z. Liu, P. Ren, C. Long, X. Wang, Y. Wan, G. Zhao, Enhanced energy storage properties of NaNbO3 and SrZrO3 modified Bi0.5Na0.5TiO3 based ceramics. J. Alloys Compd. 721, 538–544 (2017). https://doi.org/10.1016/j.jallcom.2017.05.162

    Article  Google Scholar 

  5. T. Zhou, Y. Zhang, Z. Wu, B. Chen, Concentration effect and temperature quenching of upconversion luminescence in BaGd2ZnO5: Er3+/Yb3+ phosphor. J. Rare Earths 33(7), 686–692 (2015). https://doi.org/10.1016/S1002-0721(14)60471-3

    Article  Google Scholar 

  6. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 32(5), 751–767 (1976). https://doi.org/10.1107/S0567739476001551

    Article  ADS  Google Scholar 

  7. J. Zhang, Y. Lin, L. Wang, Y. Yang, H. Yang, Q. Yuan, Significantly enhanced energy storage density in sodium bismuth titanate-based ferroelectrics under low electric fields. J. Eur. Ceram. Soc. 40(15), 5458–5465 (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.06.059

    Article  Google Scholar 

  8. Z. Chen, L. Sheng, X. Li, P. Zheng, W. Bai, L. Li, F. Wen, W. Wu, L. Zheng, J. Cui, Enhanced piezoelectric properties and electrical resistivity in W/Cr co-doped CaBi2Nb2O9 high-temperature piezoelectric ceramics. Ceram. Int. 45(5), 6004–6011 (2019). https://doi.org/10.1016/j.ceramint.2018.11.252

    Article  Google Scholar 

  9. P. Ren, Z. Liu, X. Wang, Z. Duan, Y. Wan, F. Yan, G. Zhao, Dielectric and energy storage properties of SrTiO3 and SrZrO3 modified Bi0.5Na0.5TiO3-Sr0.8Bi0.10.1TiO3 based ceramics. J. Alloys Compd. 742, 683–689 (2018). https://doi.org/10.1016/j.jallcom.2018.01.254

    Article  Google Scholar 

  10. K. Wu, H. Wang, Z. Miao, S. Ding, Y. Qi, Y. Ming, W. Ding, H. Yuan, Q. Zheng, D. Lin, Improved energy storage properties of Sr(Zr0.8Nb0.16)O3-doped Bi0.47Na0.47Ba0.06TiO3 ceramics with excellent temperature/frequency stability. Ceram. Int. 46(9), 13159–13169 (2020). https://doi.org/10.1016/j.ceramint.2020.02.090

    Article  Google Scholar 

  11. A. Verma, A.K. Yadav, S. Kumar, V. Srihari, R. Jangir, H.K. Poswal, S. Biring, S. Sen, Enhanced energy storage properties in A-site substituted Na0.5Bi0.5TiO3 ceramics. J. Alloys Compd. 792, 95–107 (2019). https://doi.org/10.1016/j.jallcom.2019.03.304

    Article  Google Scholar 

  12. F. Yan, X. Zhou, X. He, H. Bai, S. Wu, B. Shen, J. Zhai, Superior energy storage properties and excellent stability achieved in environment-friendly ferroelectrics via composition design strategy. Nano Energy 75, 105012 (2020). https://doi.org/10.1016/j.nanoen.2020.105012

    Article  Google Scholar 

  13. F. Luo, J. Xing, Y. Qin, Y. Zhong, F. Shang, G. Chen, Up-conversion luminescence, temperature sensitive and energy storage performance of lead-free transparent Yb3+/Er3+ co-doped Ba2NaNb5O15 glass-ceramics. J. Alloys Compd. 910, 164859 (2022). https://doi.org/10.1016/j.jallcom.2022.164859

    Article  Google Scholar 

  14. P. Wang, X. Wang, G. Li, Y. Li, X. Yao, Z. Pan, Energy density capability and upconversion luminescence in Er3+/Yb3+-co-doping BNT-based ferroelectric thin films. Ceram. Int. 48(19), 28606–28613 (2022). https://doi.org/10.1016/j.ceramint.2022.06.174

    Article  Google Scholar 

  15. A. Banwal, R. Bokolia, Enhanced upconversion luminescence and optical temperature sensing performance in Er3+ doped BaBi2Nb2O9 ferroelectric ceramic. Ceram. Int. 48(2), 2230–2240 (2022). https://doi.org/10.1016/j.ceramint.2021.09.314

    Article  Google Scholar 

  16. A. Banwal, R. Bokolia, Effect of Er3+ ion doping on structural, ferroelectric and up/down conversion luminescence in BaBi2Nb2O9 ceramic. Mater. Today Proc. (2021). https://doi.org/10.1016/j.matpr.2021.05.545

    Article  Google Scholar 

  17. M.X. Façanha, J.P.C. doNascimento, M.A.S. Silva, M.C.C. Filho, A.N.L. Marques, A.G. Pinheiro, A.S.B. Sombra, Up-conversion emission of Er3+/Yb3+ co-doped BaBi2Nb2O9 (BBN) phosphors. J. Lumin. 183, 102–107 (2017). https://doi.org/10.1016/j.jlumin.2016.08.011

    Article  Google Scholar 

  18. R. Bokolia, O.P. Thakur, V.K. Rai, S.K. Sharma, K. Sreenivas, Electrical properties and light up conversion effects in Bi3.79Er0.03Yb0.18Ti3xWxO12 ferroelectric ceramics. Ceram. Int. 42(5), 5718–5730 (2016). https://doi.org/10.1016/j.ceramint.2015.12.103

    Article  Google Scholar 

  19. A. Banwal, R. Bokolia, Phase evolution and microstructure of BaBi2Nb2O9 ferroelectric ceramics. Mater. Today Proc. 46, 10121–10124 (2021). https://doi.org/10.1016/j.matpr.2020.09.380

    Article  Google Scholar 

  20. D. Hu, Z. Pan, Z. He, F. Yang, X. Zhang, P. Li, J. Liu, Significantly improved recoverable energy density and ultrafast discharge rate of Na0.5Bi0.5TiO3-based ceramics. Ceram. Int. 46(10), 15364–15371 (2020). https://doi.org/10.1016/j.ceramint.2020.03.080

    Article  Google Scholar 

  21. X. Qiao, D. Wu, F. Zhang, M. Niu, B. Chen, X. Zhao, P. Liang, L. Wei, X. Chao, Z. Yang, Enhanced energy density and thermal stability in relaxor ferroelectric Bi0.5Na0.5TiO3-Sr0.7Bi0.2TiO3 ceramics. J. Eur. Ceram. Soc. 39(15), 4778–4784 (2019). https://doi.org/10.1016/j.jeurceramsoc.2019.07.003

    Article  Google Scholar 

  22. W. Ma, Y. Zhu, M.A. Marwat, P. Fan, B. Xie, D. Salamon, Z.G. Ye, H. Zhang, Enhanced energy-storage performance with excellent stability under low electric fields in BNT-ST relaxor ferroelectric ceramics. J. Mater. Chem. C 7(2), 281–288 (2019). https://doi.org/10.1039/c8tc04447c

    Article  Google Scholar 

  23. C. Kornphom, K. Saenkam, T. Bongkarn, Enhanced energy storage properties of BNT-ST-AN relaxor ferroelectric ceramics fabrication by the solid-state combustion technique. Phys. Status Solidi Appl. Mater. Sci. (2023). https://doi.org/10.1002/pssa.202200240

    Article  Google Scholar 

  24. Q. Huang, F. Si, B. Tang, The effect of rare-earth oxides on the energy storage performances in BaTiO3 based ceramics. Ceram. Int. 48(12), 17359–17368 (2022). https://doi.org/10.1016/j.ceramint.2022.02.299

    Article  Google Scholar 

  25. Y. Wan, N. Hou, P. Ren, M. Ma, K. Song, F. Yan, X. Lu, G. Zhao, High-temperature energy storage properties of Bi0.5Na0.5TiO3 based ceramics modified by NaNbO3. J. Alloys Compd. (2021). https://doi.org/10.1016/j.jallcom.2021.161591

    Article  Google Scholar 

  26. A. Banwal, R. Bokolia, Efficient tunable temperature sensitivity in thermally coupled levels of Er3+/Yb3+ co-doped BaBi2Nb2O9 ferroelectric ceramic. J. Lumin. 263, 120071 (2023). https://doi.org/10.1016/j.jlumin.2023.120071

    Article  Google Scholar 

  27. R. Bokolia, O.P. Thakur, V.K. Rai, S.K. Sharma, K. Sreenivas, Dielectric, ferroelectric and photoluminescence properties of Er3+ doped Bi4Ti3O12 ferroelectric ceramics. Ceram. Int. 41(4), 6055–6066 (2015). https://doi.org/10.1016/j.ceramint.2015.01.062

    Article  Google Scholar 

  28. A. Banwal, R. Bokolia, Thermometric sensing performance in Erbium modified SrBi2xNb2ErxO9 ferroelectric ceramic for optoelectronic devices. Ceram. Int. 48(23), 34405–34414 (2022). https://doi.org/10.1016/j.ceramint.2022.08.019

    Article  Google Scholar 

  29. A. Shandilya, R.S. Yadav, A.K. Gupta, K. Sreenivas, Effects of Yb3+ ion doping on lattice distortion, optical absorption and light upconversion in Er3+/Yb3+ co-doped SrMoO4 ceramics. Mater. Chem. Phys. 264, 124441 (2021). https://doi.org/10.1016/j.matchemphys.2021.124441

    Article  Google Scholar 

  30. F. Wang, Y. Han, C.S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, X. Liu, Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 463(7284), 1061–1065 (2010). https://doi.org/10.1038/nature08777

    Article  ADS  Google Scholar 

  31. R. Ramaraghavulu, S. Buddhudu, Structural and dielectric properties of BaBi2Nb2O9 ferroelectric ceramic powders by a solid state reaction method. Ferroelectrics 460(1), 57–67 (2014). https://doi.org/10.1080/00150193.2014.874924

    Article  ADS  Google Scholar 

  32. H.C. Gupta, Archana, V. Luthra, Lattice vibrations of ABi2Nb2O9 crystals (A = Ca, Sr, Ba). Vib. Spectrosc.Spectrosc. 56(2), 235–240 (2011). https://doi.org/10.1016/j.vibspec.2011.03.002

    Article  Google Scholar 

  33. Y. González-Abreu, A. Pelaíz-Barranco, Y. Gagou, J. Belhadi, P. Saint-Grégoire, Vibrational analysis on two-layer Aurivillius phase Sr1-xBaxBi2Nb2O9 using Raman spectroscopy. Vib. Spectrosc. 77, 1–4 (2015). https://doi.org/10.1016/j.vibspec.2015.01.001

    Article  Google Scholar 

  34. A. Basheer, G. Prasad, G.S. Kumar, N.V. Prasad, Dielectric studies on Sm-modified two-layered BLSF ceramics. Bull. Mater. Sci. 42(3), 1–11 (2019). https://doi.org/10.1007/s12034-019-1776-6

    Article  Google Scholar 

  35. F.D. Hardcastle, I.E. Wachs, Determination of niobium-oxygen bond distances and bond orders by Raman spectroscopy. Solid State Ion. 45, 201–213 (1991). https://doi.org/10.1016/0167-2738(91)90153-3

    Article  Google Scholar 

  36. F.D. Hardcastle, I.E. Wachs, Determination of vanadium-oxygen bond distances and bond orders by Raman spectroscopy. J. Phys. Chem. 95, 5031–5041 (1991). https://doi.org/10.1021/j100166a025

    Article  Google Scholar 

  37. G.D. Chryssikos, Bond length-Raman frequency correlations in borate crystals. J. Raman Spectrosc. 22, 645–650 (1991). https://doi.org/10.1002/jrs.1250221109

    Article  ADS  Google Scholar 

  38. F.D. Hardcastle, I.E. Wachs, Determination of molybdenum-oxygen bond distances and bond orders by Raman spectroscopy. J. Raman Spectrosc. 21, 683–691 (1991). https://doi.org/10.1002/jrs.1250221109

    Article  ADS  Google Scholar 

  39. P. Keburis, J. Banys, A. Brilingas, J. Prapuolenis, A. Kholkin, M.E.V. Costa, Dielectric properties of relaxor ceramics BBN. Ferroelectr. 353, 149–153 (2007). https://doi.org/10.1080/00150190701368109

    Article  ADS  Google Scholar 

  40. J.D. Bobic, M.M.V. Petrovic, B.D. Stojanovic, Review of the most common relaxor ferroelectrics and their applications. Mag. Ferroelectr. Multiferr Meta Oxi. (2018). https://doi.org/10.1016/B978-0-12-811180-2.00011-6

    Article  Google Scholar 

  41. P. Sun, H. Wang, X. Bu, Z. Chen, J. Du, L. Li, F. Wen, W. Bai, P. Zheng, W. Wu, L. Zheng, Y. Zhang, Enhanced energy storage performance in bismuth layer-structured BaBi2Me2O9 (Me = Nb and Ta) relaxor ferroelectric ceramics. Ceram. Int. 46, 15907–15914 (2020). https://doi.org/10.1016/j.ceramint.2020.03.139

    Article  Google Scholar 

  42. A. Khokhar, M.L.V. Mahesh, A.R. James, P.K. Goyal, K. Sreenivas, Sintering characteristics and electrical properties of BaBi4Ti4O15 ferroelectric ceramics. J. Alloys Compd. 581, 150–159 (2013). https://doi.org/10.1016/j.jallcom.2013.07.040

    Article  Google Scholar 

  43. A. Khokhar, P.K. Goyal, O.P. Thakur, K. Sreenivas, Effect of excess of bismuth doping on dielectric and ferroelectric properties of BaBi4Ti4O15 ceramics. Ceram. Int. 41, 4189–4198 (2015). https://doi.org/10.1016/j.ceramint.2014.12.103

    Article  Google Scholar 

  44. A. Kumar, S. Asthana, Investigation on energy storage properties and thermally stable dielectric constant for high temperature electronic device applications in the holmium substituted Na0.5Bi0.5TiO3. J. Mater. Sci. Mater. Elect. 32, 20225–20239 (2021). https://doi.org/10.1007/s10854-021-06526-w

    Article  Google Scholar 

  45. A. Chakrabarti, A.R. Molla, Zirconia assisted crystallization of ferroelectric BaBi2Nb2O9 based glass-ceramics: kinetics, optical and dielectrical properties. J. Alloys Compd. 844, 156181 (2020). https://doi.org/10.1016/j.jallcom.2020.156181

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to recognize the Computational and Functional Material Research Lab (CFMRL), Department of Applied Physics, Delhi Technological University, for providing all the facilities to conduct this research. Also, one of the authors thanks CSIR (08/0133(15560)) for their generous financial assistance.

Author information

Authors and Affiliations

Authors

Contributions

AB: Conceptualization, data curation, writing-original draft, made all the measurements. MV: XRD analysis, writing-editing, and Raman spectroscopy. BS: FTIR analysis, data curation, writing-editing. RB: Supervision, reviewing, and editing of the original draft.

Corresponding author

Correspondence to Renuka Bokolia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banwal, A., Verma, M., Singh, B. et al. Temperature stability and improved energy storage efficiency of BaBi2Nb2O9: Er3+/Yb3+ relaxor ferroelectric ceramic under moderate electric fields. Appl. Phys. A 130, 334 (2024). https://doi.org/10.1007/s00339-024-07475-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07475-x

Keywords

Navigation