Skip to main content
Log in

Effect of Pr3+ substitution on structural, dielectric and energy storage properties of Ba0.1Bi0,9(Ti0.9Zr0.1)0.1Fe0.9O3 ceramic

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The praseodymium Pr3+ doped at Bi site of Ba0.1Bi0.9(Ti0.9Zr0.1)0.1Fe0.9O3, under low concentrations (0%, 0.1%, 0.5% and 1% abbreviated as BBTZF0, Pr-BBTZF001, Pr-BBTZF005 and Pr-BBTZF01, respectively) were prepared by the solid-state reaction method. A detailed investigation has been made on structural, microstructural, ferroelectric and dielectric properties of Ba0.1(Bi1−xPrx)0.9(Ti0.9Zr0.1)0.1Fe0.9O3 ceramics. Rietveld refinement fitting revealed that the structure of these ceramics, at room temperature is rhombohedral with space group R3c. The cell volume decreased with increasing Pr-content due to the smaller ionic radius of the Pr. Temperature dependence of the dielectric constant (εr) of all prepared ceramics showed anomaly around TN (antiferromagnetic transition temperature); thus suggesting a magneto-electric coupling in these materials. The shift of TN with frequency is attributed to the Maxwell Wagner relaxation rather than the relaxor behavior. The PE loop study shows the improved ferroelectric behavior and the reduced leakage current density with Pr doping. Moreover, the energy storage properties showed a clear enhancement upon the increase of the Pr concentration. The recoverable energy storage density (Wrec) of 2.75 J cm−3 with energy storage efficiency (η) of 44.52% was achieved for Pr-BBTZF01.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

There is no data included.

References

  1. G. Catalan, J.F. Scott, Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463 (2009). https://doi.org/10.1002/adma.200802849

    Article  Google Scholar 

  2. W. Eerenstein, N.D. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials. Nature 442, 759 (2006). https://doi.org/10.1038/nature05023

    Article  ADS  Google Scholar 

  3. S.V.V. Khikhlovskyi, G. Blake, The renaissance of multiferroics: bismuth ferrite (BiFeO3)—a candidate multiferroic material in nanoscience. PhD Thesis (2010)

  4. D.I. Khomskii, Multiferroics: different ways to combine magnetism and ferroelectricity. J. Magn. Magn. Mater. 306, 1 (2006). https://doi.org/10.1016/j.jmmm.2006.01.238

    Article  ADS  Google Scholar 

  5. S.W. Cheong, M. Mostovoy, Multiferroics: a magnetic twist for ferroelectricity. Nat. Mater. 6, 13 (2007). https://doi.org/10.1038/nmat1804

    Article  ADS  Google Scholar 

  6. S.G. Bahoosh, J.M. Wesselinowa, Origin of the different multiferroism in BiFeOand GaFeO3. J. Appl. Phys. 113, 063905 (2013). https://doi.org/10.1063/1.4791586

    Article  ADS  Google Scholar 

  7. F. Bhadala, V.K. Jha, L. Suthar, M. Roy, Synthesis, structural, electrical and thermal properties of ScFeO3 ceramic. Am. J. Mod. Phys. 6(6), 132 (2017). https://doi.org/10.11648/j.ajmp.20170606.14

    Article  Google Scholar 

  8. A. Ali, I. Khan, Z. Ali, F. Khan, I. Ahmad, First-principles study of BiFeO3 and BaTiO3 in tetragonal structure. Int. J. Mod. Phys. B 33(21), 1950231 (2019). https://doi.org/10.1142/S021797921950231X

    Article  ADS  Google Scholar 

  9. A.A. Belik, Solid solutions between PbVO3 and BiCoO3. Inorg. Chem. 60, 4957 (2021). https://doi.org/10.1021/acs.inorgchem.1c00030

    Article  Google Scholar 

  10. A. Ali, H.I. Elsaeedy, S. Ullah, S.A. Khan, I. Khan, First-principles study of polar magnets corundum double-oxides Mn2FeMO6 (M = W and Mo). J. Magn. Magn. Mater. 563, 169942 (2022). https://doi.org/10.1016/j.jmmm.2022.169942

    Article  Google Scholar 

  11. A. Ali, H.E. Ali, I. Khan, Investigations of the structural, magnetic, mechanical, electronic and ferroelectric properties of Mn2MnWO6 double corundum oxide. Mater. Chem. Phys. 296, 127197 (2023). https://doi.org/10.1016/j.matchemphys.2022.127197

    Article  Google Scholar 

  12. I. Sosnowska, R. Przenioslo, P. Fischer, V.A. Murashov, Investigation of crystal and magnetic structure of BiFeO3 using neutron diffraction. Acta Phys. Pol. A. 86(4), 629 (1994). https://doi.org/10.12693/APhysPolA.86.629

    Article  ADS  Google Scholar 

  13. Y.F. Cui, Y.G. Zhao, L.B. Luo, J.J. Yang, H. Chang, M.H. Zhu, D. Xie, T.L. Ren, Dielectric, magnetic, and magnetoelectric properties of La and Ti codoped BiFeO3. Appl. Phys. Lett. 97, 222904 (2010). https://doi.org/10.1063/1.3524225

    Article  ADS  Google Scholar 

  14. I. Kallel, H. Khemakhem, Z. Sassi, N. Abdelmoula, E.-K. Hlil, N. Randrianantoandro, The origin of the large magnetoelectric coupling in the ceramic Ba0.1Bi0.9(Ti0.9Zr0.1)0.1Fe0.9O3. J. Phys. D Appl. Phys. 55(6), 065303 (2022). https://doi.org/10.1088/1361-6463/ac2c3a

    Article  ADS  Google Scholar 

  15. C.M. Fernandez-Posada, A. Castro, J.-M. Kiat, F. Porcher, O. Pena, M. Alguero, H. Amorin, A novel perovskite oxide chemically designed to show multiferroic phase boundary with room-temperature magnetoelectricity. Nat. Commun. 7, 12772 (2016). https://doi.org/10.1038/ncomms12772

    Article  ADS  Google Scholar 

  16. S.-C. Yang, A. Kumar, V. Petkov, S. Priya, Room-temperature magnetoelectric coupling in single-phase BaTiO3-BiFeO3 system. J. Appl. Phys. 113, 144101 (2013). https://doi.org/10.1063/1.4799591

    Article  ADS  Google Scholar 

  17. E.V. Ramana, A. Mahajan, M.P.F. Graca, A. Srinivas, M.A. Valente, Ferroelectric and magnetic properties of magnetoelectric (Na0.5Bi0.5)TiO3–BiFeO3 synthesized byacetic acid assisted sol–gel method. J. Eur. Ceram. Soc. 34(16), 4201 (2014). https://doi.org/10.1016/j.jeurceramsoc.2014.06.027

    Article  Google Scholar 

  18. Y.-J. Wu, X.-K. Chen, J. Zhang, X.-J. Chen, Magnetic enhancement across a ferroelectric–antiferroelectric phase boundary in Bi1xNdxFeO3. J. Appl. Phys. 111(5), 053927 (2012). https://doi.org/10.1063/1.3693531

    Article  ADS  Google Scholar 

  19. J. Bielecki, P. Svedlindh, D.T. Tibebu, S. Cai, S.-G. Eriksson, L. Borjesson, C.S. Knee, Structural and magnetic properties of isovalently substituted multiferroic BiFeO3: insights from Raman spectroscopy. Phys. Rev. B. 86(18), 184422 (2012). https://doi.org/10.1103/PhysRevB.86.184422

    Article  ADS  Google Scholar 

  20. S. Madolappa, S. Kundu, R. Bhimireddi, K.B.R. Varma, Improved electrical characteristics of Pr-doped BiFeO3 ceramics prepared by sol–gel route. Mater. Res. Express 3(6), 065009 (2016). https://doi.org/10.1088/2053-1591/3/6/065009

    Article  ADS  Google Scholar 

  21. M. Muneeswaran, R. Dhanalakshmi, N.V. Giridharan, Structural, vibrational, electrical and magnetic properties of Bi1xPrxFeO3. Ceram. Int. 41(7), 8511 (2015). https://doi.org/10.1016/j.ceramint.2015.03.058

    Article  Google Scholar 

  22. S.K. Srivastav, N.S. Gajbhiye, A. Banerjee, Structural transformation and enhancement in magnetic properties of single-phase Bi1−xPrxFeO3 nanoparticles. J. Appl. Phys. 113, 203917 (2013). https://doi.org/10.1063/1.4807928

    Article  ADS  Google Scholar 

  23. C. Singh, S.B. Narang, I.S. Hudiara, Y. Bai, F. Tabatabaei, Static magnetic properties of Co and Ru substituted Ba–Sr ferrite. Mater. Res. Bull. 43, 176 (2008). https://doi.org/10.1016/j.materresbull.2007.06.050

    Article  Google Scholar 

  24. J. Rodriguez-Carvajal, Program Fullprof, Laboratoire Léon Brillouin, CEA-CNRS, 2015 version February 2015, LLB-LCSIM.

  25. P.C. Sati, M. Kumar, S. Chhoker, Low temperature ferromagnetic ordering and dielectric properties of Bi1xDyxFeO3 ceramics. Cearm. Int. 41(2), 3227 (2015). https://doi.org/10.1016/j.ceramint.2014.11.012

    Article  Google Scholar 

  26. P.C. Sati, M. Sahni, M. Kumar, M. Arora, P. Negi, M. Tomar, V. Gupta, N. Kumar, Effect of Pr3+ substitution on structural, dielectric, electrical and magnetic properties of BiFe0.80Ti0.20O3 [Bi1-xPrxFe0.80Ti0.20O3, x=0.05, 0.10, 0.15] ceramics. Integr. Ferroelectr. 193, 1 (2018). https://doi.org/10.1080/10584587.2018.1514876

    Article  ADS  Google Scholar 

  27. H. Maleki, Characterization and photocatalytic activity of Y-doped BiFeO3 ceramics prepared by solid-state reaction method. Adv. Powder Technol. 30(11), 2832 (2019). https://doi.org/10.1016/j.apt.2019.08.031

    Article  Google Scholar 

  28. H. Maleki, Photocatalytic activity, optical and ferroelectric properties of Bi0.8Nd0.2FeO3 nanoparticles synthesized by sol-gel and hydrothermal methods. J. Magn. Magn. Mater. 458, 277 (2018). https://doi.org/10.1016/j.jmmm.2018.03.043

    Article  ADS  Google Scholar 

  29. M.A. Basith, A. Billah, M.A. Jalil, N. Yesmin, M.A. Sakib, E.K. Ashik, S.M.E.H. Yousuf, S.S. Chowdhury, M.S. Hossain, S.H. Firoz, B. Ahmmad, The 10% Gd and Ti co-doped BiFeO3: a promising multiferroic material. J. Alloy. Compd. 694, 792 (2017). https://doi.org/10.1016/j.jallcom.2016.10.018

    Article  Google Scholar 

  30. X. Li, X. Wang, Y. Li, W. Mao, P. Li, T. Yang, J. Yang, Structural, morphological and multiferroic properties of Pr and Co co-substituted BiFeO3 nanoparticles. Mater. Lett. 90, 152 (2013). https://doi.org/10.1016/j.matlet.2012.09.038

    Article  Google Scholar 

  31. C.-S. Chen, P.-Y. Chen, W.S. Chang, C. Blaise, Y.L. Hsieh, R.R. Chien, V.H. Schmidt, Y.-S. Jou, C.-S. Tu, Evolution of domain structure and ferroelectric polarization in praseodymium doped BiFeO3 ceramics. Mater. Res. Bull. 133, 111054 (2021). https://doi.org/10.1016/j.materresbull.2020.111054

    Article  Google Scholar 

  32. P. Ravindran, R. Vidya, A. Kjekshus, H. Fjellvåg, O. Eriksson, Theoretical investigation of magnetoelectric behavior in BiFeO3. Phys. Rev. B 74, 224412 (2006). https://doi.org/10.1103/PhysRevB.74.224412

    Article  ADS  Google Scholar 

  33. F. Yan, Y. Shi, X. Zhou, K. Zhu, B. Shen, J. Zhai, Optimization of polarization and electric field of bismuth ferrite-based ceramics for capacitor applications. Chem. Eng. J. 417, 127945 (2021). https://doi.org/10.1016/j.cej.2020.127945

    Article  Google Scholar 

  34. G. Wang, J. Li, X. Zhang, Z. Fan, F. Yang, A. Feteira, D. Zhou, D.C. Sinclair, T. Ma, X. Tan, D. Wang, I.M. Reaney, Ultrahigh energy storage density lead-free multilayers by controlled electrical homogeneity. Energy Environ. Sci. 12(2), 582 (2019). https://doi.org/10.1039/C8EE03287D

    Article  Google Scholar 

  35. D. Zheng, R. Zuo, D. Zhang, Y. Li, X. Tan, Novel BiFeO3–BaTiO3 –Ba(Mg1/3Nb2/3)O3 lead-free relaxor ferroelectric ceramics for energy-storage capacitors. J. Am. Ceram. Soc. 98(9), 2692 (2015). https://doi.org/10.1111/jace.13737

    Article  Google Scholar 

  36. N. Liu, R. Liang, X. Zhao, C. Xu, Z. Zhou, X. Dong, Novel bismuth ferrite-based lead-free ceramics with high energy and power density. J. Am. Ceram. Soc. 101(8), 3259 (2018). https://doi.org/10.1111/jace.15546

    Article  Google Scholar 

  37. D. Wang, Z. Fan, D. Zhou, A. Khesro, S. Murakami, A. Feteira, Q. Zhao, X. Tan, I.M. Reaney, Bismuth ferrite-based lead-free ceramics and multilayers with high recoverable energy density. J. Mater. Chem. A 6, 4133 (2018). https://doi.org/10.1039/C7TA09857J

    Article  Google Scholar 

  38. X. Gao, Y. Li, J. Chen, C. Yuan, M. Zeng, A. Zhang, X. Gao, X. Lu, Q. Li, J.-M. Liu, High energy storage performances of Bi1xSmxFe0.95Sc0.05O3 lead-free ceramics synthesized by rapid hot press sintering. J. Eur. Ceram. Soc. 39(7), 2331 (2019). https://doi.org/10.1016/j.jeurceramsoc.2019.02.009

    Article  Google Scholar 

  39. F. Li, J. Zhai, B. Shen, H. Zeng, X. Jian, S. Lu, Multifunctionality of lead-free BiFeO3-based ergodic relaxor ferroelectric ceramics: High energy storage performance and electrocaloric effect. J. Alloy. Compd. 803, 185 (2019). https://doi.org/10.1016/j.jallcom.2019.05.367

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by Laboratory of Multifunctional Materials and Applications (LaMMA), (LR16ES18), Faculty of Sciences of Sfax, University of Sfax (Tunisia).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the present manuscript. Material synthesis, data collection, and analysis were performed by DSAK, ZA, NA and HK. YH and DM contribute to the energy storage studies especially in P = f(E) measurements. The first draft of the manuscript was written by DSAK with the cooperation of ZA and all other authors commented on the previous versions of the manuscript. All authors read and approved the final draft of the manuscript.

Corresponding author

Correspondence to Zied Abdelkafi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Research data policy and data availability statements

The available in the article are true and valid which are recognized by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khadir, D.S.A., Abdelkafi, Z., Hadouch, Y. et al. Effect of Pr3+ substitution on structural, dielectric and energy storage properties of Ba0.1Bi0,9(Ti0.9Zr0.1)0.1Fe0.9O3 ceramic. Appl. Phys. A 129, 519 (2023). https://doi.org/10.1007/s00339-023-06787-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06787-8

Keywords

Navigation