Skip to main content
Log in

Evaluating PVP coated iron oxide particles for localized magnetic hyperthermia and MRI imaging

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Ferrofluids based on magnetic iron oxide nanoparticles (IONPs) have been widely studied as multipurpose agents in various medical applications including magnetic hyperthermia, targeted drug delivery and magnetic resonance imaging (MRI). To increase their stability and compatibility with the living cells and thus improve their suitability for these purposes, the IONPs are often functionalized with different organic or inorganic molecules. In this work we report on the preparation of polyvinilpyrrolidone (PVP) functionalized IONPs through a simple co-precipitation method and investigated their suitability for magnetic hyperthermia and as a MRI contrast agent. Spherical PVP-coated IONPs, with an average particle size of ≈ 15 nm, showed superparamagnetic behavior and high saturation magnetization Ms = 80.7 emug−1, at room temperature. The specific absorption rate (SAR), a measure of the heating ability, ranged from 17 W/g to 721 W/g (evaluated for various combinations of AC magnetic field amplitudes and frequencies), while the intrinsic loss power (ILP) was in the range from 0.53 nHm2 kg−1 to 2.34 nHm2 kg−1. In addition to relatively good heating ability, high T2 relaxivity, r2 = 126 mM−1 s−1 and high r2/r1 ratio demonstrated that the preparation procedure used here can yield nanoparticles suitable for MRI guided localized magnetic hyperthermia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data presented in this study are available upon request from the corresponding author.

References

  1. N.P. Kishore, S.K. Gugulothu, J. Inst. Eng. Ser. C 103, 167 (2021). https://doi.org/10.1007/s40032-021-00750-3

    Article  Google Scholar 

  2. R. Bhateria, R. Singh, J. Water Process Eng. 31, 100845 (2019). https://doi.org/10.1016/j.jwpe.2019.100845

    Article  Google Scholar 

  3. Q.A. Pankhurst, J. Connolly, S.K. Jones et al., J. Phys. D Appl. Phys. 36, R167 (2003). https://doi.org/10.1088/0022-3727/36/13/201

    Article  ADS  Google Scholar 

  4. M. Bustamante-Torres, D. Romero-Fierro, J. Estrella-Nuñez, B. Arcentales-Vera, E. Chichande-Proaño, E. Bucio, Polymers 14, 752 (2022). https://doi.org/10.3390/polym14040752

    Article  Google Scholar 

  5. B.H. de la Parte, I. Rodrigo, J. Gutiérrez-Basoa, S. IturrizagaCorrecher, C. Mar Medina, J.J. Echevarría-Uraga, J.A. Garcia, F. Plazaola, I. García-Alonso, Cancers 14, 3084 (2022). https://doi.org/10.3390/cancers14133084

    Article  Google Scholar 

  6. X. Ma, Y. Wang, X.L. Liu, H. Ma, G. Li, Y. Li, F. Gao, M. Peng, H.M. Fan, X.J. Liang, Nanoscale Horiz. 4, 1450 (2019). https://doi.org/10.1039/c9nh00233b

    Article  ADS  Google Scholar 

  7. N.J. Orsini, M.M. Milić, T.E. Torres, Nanotechnology 31, 225707 (2020). https://doi.org/10.1088/1361-6528/ab76e7

    Article  ADS  Google Scholar 

  8. L.P. Mona, S.P. Songca, P.A. Ajibade, Nanotechnol. Rev. 11, 176 (2021). https://doi.org/10.1515/ntrev-2022-0011

    Article  Google Scholar 

  9. X. Liu, J. Zheng, W. Sun, X. Zhao, Y. Li, N. Gong, Y. Wang, X. Ma, T. Zhang, L.Y. Zhao, Y. Hou, ACS Nano. 13, 8811 (2019). https://doi.org/10.1021/acsnano.9b01979

    Article  Google Scholar 

  10. K. El-Boubbou, O.M. Lemine, R. Ali, S.M. Huwaizi, S. Al-Humaid, A. AlKushi, New J. Chem. 46, 5489 (2022). https://doi.org/10.1039/d1nj05791j

    Article  Google Scholar 

  11. X. Wang, Y. Qi, Z. Hu, L. Jiang, F. Pan, Z. Xiang, Z. Xiong, W. Jia, J. Hu, W. Lu, Adv. Compos. Hybrid. Mater. 5, 1786 (2022). https://doi.org/10.1007/s42114-022-00433-2

    Article  Google Scholar 

  12. S. Sánchez-Cabezas, R. Montes-Robles, J. Gallo, F. Sancenón, R. Martínez-Máñez, Dalton Trans. 48, 3883 (2019). https://doi.org/10.1039/c8dt04685a

    Article  Google Scholar 

  13. L. Dallet, D. Stanicki, P. Voisin, S. Miraux, E.J. Ribot, Sci. Rep. 11, 3286 (2021). https://doi.org/10.1038/s41598-021-82095-6

    Article  ADS  Google Scholar 

  14. Y. He, Z. Mao, Z. Lu, J. Yan, Y. Zhang, A. Bianco, Y. Cao, R. Pei, A.C.S. Appl, Nano Mater. 5, 15826 (2022). https://doi.org/10.1021/acsanm.2c03971

    Article  Google Scholar 

  15. H. Lu, A. Chen, X. Zhang, Z. Wei, R. Cao, Y. Zhu, J. Lu, Z. Wang, L. Tian, Nat. Commun. 13, 7948 (2022). https://doi.org/10.1038/s41467-022-35655-x

    Article  ADS  Google Scholar 

  16. P. Farinha, J.M. Coelho, C.P. Reis, M.M. Gaspar, Nanomaterials 11, 3432 (2021). https://doi.org/10.3390/nano11123432

    Article  Google Scholar 

  17. S. Xiao, X. Yu, L. Zhang, Y. Zhang, W. Fan, T. Sun, C. Zhou, Y. Liu, Y. Liu, M. Gong, D. Zhang, Int. J. Nanomed. 14, 8499 (2019). https://doi.org/10.2147/IJN.S219749

    Article  Google Scholar 

  18. A. Ali, T. Shah, R. Ullah, P. Zhou, M. Guo, M. Ovais, Z. Tan, Y. Rui, Front. Chem. 9, 629054 (2021). https://doi.org/10.3389/fchem.2021.629054

    Article  Google Scholar 

  19. S.P. Yeap, J. Lim, B.S. Ooi, A.L. Ahmad, J. Nanopart. Res. 19, 1 (2017). https://doi.org/10.1007/s11051-017-4065-6

    Article  ADS  Google Scholar 

  20. E. Amstad, M. Textor, E. Reimhult, Nanoscale 3, 2819 (2011). https://doi.org/10.1039/c1nr10173k

    Article  ADS  Google Scholar 

  21. O.A. Noqta, A.A. Aziz, I.A. Usman, M. Bououdina, J. Supercond. Nov. Magn. 32, 779 (2019). https://doi.org/10.1007/s10948-018-4939-6

    Article  Google Scholar 

  22. M. Teodorescu, M. Bercea, Polym. Plast. Technol. Eng. 54, 923 (2015). https://doi.org/10.1080/03602559.2014.979506

    Article  Google Scholar 

  23. K. Seo, K. Sinha, E. Novitskaya, O.A. Graeve, Mater. Lett. 215, 203 (2018). https://doi.org/10.1016/j.matlet.2017.12.107

    Article  Google Scholar 

  24. Y. Zhu, W. Zhao, H. Chen, J. Shi, J. Phys. Chem. C 111, 5281 (2007). https://doi.org/10.1021/jp0676843

    Article  Google Scholar 

  25. A. Ruíz-Baltazar, R. Esparza, G. Rosas, R. Pérez, J. Nanomater. 2015, 240948 (2015). https://doi.org/10.1155/2015/240948

    Article  Google Scholar 

  26. J. Huang, L. Bu, J. Xie, K. Chen, Z. Cheng, X. Li, X. Chen, ACS Nano. 4, 7151 (2010). https://doi.org/10.1021/nn101643u

    Article  Google Scholar 

  27. M.F. Silva, L.A.S. de Oliveira, M.A. Ciciliati, M.K. Lima, F.F. Ivashita, D.M. Fernandes de Oliveira, A.A.W. Hechenleitner, E.A.G. Pineda, J. Nanomater. 2017, 7939727 (2017). https://doi.org/10.1155/2017/7939727

    Article  Google Scholar 

  28. Z. Lu, M. Niu, R. Qiao, M. Gao, J. Phys. Chem. B 112, 14390 (2008). https://doi.org/10.1021/jp8025072

    Article  Google Scholar 

  29. G. Pandey, S. Singh, G. Hitkari, Int. Nano Lett. 8, 111 (2018). https://doi.org/10.1007/s40089-018-0234-6

    Article  Google Scholar 

  30. R.D. Kale, B.K. Prerana, J. Environ. Chem. Eng. 6, 5961 (2018). https://doi.org/10.1016/j.jece.2018.09.015

    Article  Google Scholar 

  31. O.D. Jayakumar, R. Ganguly, A.K. Tyagi, D.K. Chandrasekharan, C.K. Krishnan Nair, J. Nanosci. Nanotechnol. 9, 6344 (2009). https://doi.org/10.1166/jnn.2009.1369

    Article  Google Scholar 

  32. P.A. Rose, P.K. Praseetha, M. Bhagat, P. Alexander, S. Abdeen, M. Chavali, Technol. Cancer Res. Treat. 12, 463 (2013). https://doi.org/10.7785/tcrt.2012.500333

    Article  Google Scholar 

  33. P.J. Sugumaran, X.L. Liu, T.S. Herng, E. Peng, J. Ding, A.C.S. Appl, Mater. Interfaces. 11, 22703 (2019). https://doi.org/10.1021/acsami.9b04261

    Article  Google Scholar 

  34. A. Rajan, N.K. Sahu, Colloids Surf. A Physicochem. Eng. 603, 125210 (2020). https://doi.org/10.1016/j.colsurfa.2020.125210

    Article  Google Scholar 

  35. Y. Zhang, J.Y. Liu, S. Ma, Y.J. Zhang, X. Zhao, X.D. Zhang, Z.D. Zhang, J. Mater. Sci. Mater. Med. 21, 1205 (2010). https://doi.org/10.1007/s10856-009-3881-3

    Article  Google Scholar 

  36. K. El-Boubbou, R. Ali, H.M. Bahhari, K.O. AlSaad, A. Nehdi, M. Boudjelal, A. AlKushi, Bioconjugate Chem. 27, 1471 (2016). https://doi.org/10.1021/acs.bioconjchem.6b00257

    Article  Google Scholar 

  37. X. Wang, F. Pan, Z. Xiang, W. Jia, W. Lu, Mater. Lett. 262, 127187 (2020). https://doi.org/10.1016/j.matlet.2019.127187

    Article  Google Scholar 

  38. F.Y. Alzoubi, O. Abu Noqta, T. Al Zoubi, H.M. Al-Khateeb, M.K. Alqadi, A. Abuelsamen, G.N. Makhadmeh, J. Compos. Sci. 7, 131 (2023). https://doi.org/10.3390/jcs7030131

    Article  Google Scholar 

  39. M. Salehipour, S. Rezaei, J. Mosafer, Z. Pakdin-Parizi, A. Motaharian, M. Mogharabi-Manzari, J. Nanopart. Res. 23, 1 (2021). https://doi.org/10.1007/s11051-021-05156-x

    Article  Google Scholar 

  40. J. Rodriguez-Carvajal, Phys. B 192, 55 (1993). https://doi.org/10.1016/0921-4526(93)90108-i

    Article  ADS  Google Scholar 

  41. N.C. Halder, C.N.J. Wagner, Acta Crystallogr. 20, 312 (1966). https://doi.org/10.1107/S0365110X66000628

    Article  Google Scholar 

  42. C.A. Schneider, W.S. Rasband, K.W. Eliceiri, Nat. Methods 9(7), 671 (2012). https://doi.org/10.1038/nmeth.2089

    Article  Google Scholar 

  43. D.G. Rancourt, J.Y. Ping, Nucl. Instrum. Methods Phys. Res. B 58, 85 (1991). https://doi.org/10.1016/0168-583x(91)95681-3

    Article  ADS  Google Scholar 

  44. A.O. Turk, A. Barhoum, M. Mohamed Rashad, M. Bechlany, J. Mater. Sci. Mater. Electron. 28, 17526 (2017). https://doi.org/10.1007/s10854-017-7688-6

    Article  Google Scholar 

  45. M. Coduri, P. Masala, L. Del Bianco, F. Spizzo, D. Ceresoli, C. Castellano, S. Cappelli, C. Oliva, S. Checchia, M. Allieta, D.V. Szabo, Nanomaterials 10, 867 (2020). https://doi.org/10.3390/nano10050867

    Article  Google Scholar 

  46. R. Zulfiqar Khan, M.U. Rahman, Z. Iqbal, J. Mater. Sci. Mater. Electron. 27, 12490 (2016). https://doi.org/10.1590/s1516-14392009000100002

    Article  Google Scholar 

  47. L.H. Singh, S.S. Pati, E.M. Guimarães, P.A.M. Rodrigues, A.C. Oliveira, V.K. Garg, Mat. Chem. Phys. 178, 182 (2016). https://doi.org/10.1016/j.matchemphys.2016.05.003

    Article  Google Scholar 

  48. K. Kelm, W. Mader, Naturforsch B 61, 665 (2006). https://doi.org/10.1515/znb-2006-0605

    Article  ADS  Google Scholar 

  49. G.M. da Costa, C. Blanco-Andujar, E. De Grave, Q.A. Pankhurst, J. Phys. Chem. B 118(11738), 11738–11746 (2014). https://doi.org/10.1021/jp5055765

    Article  Google Scholar 

  50. A.D. Arelaro, A.L. Brandl, E. Lima Jr., L.F. Gamarra, G.E.S. Brito, W.M. Pontuschka, G.F. Goya, J. Appl. Phys. 97, 10J316 (2005). https://doi.org/10.1063/1.1853931

    Article  Google Scholar 

  51. B.D. Cullity, C.D. Graham, Introduction to magnetic materials (Wiley, New Jersey, 2009)

    Google Scholar 

  52. R.M. Cornell, U. Schwertmann, The iron oxides: structure, properties, reactions, occurrences, and uses, vol. 664 (Wiley, Weinheim, 2003)

    Book  Google Scholar 

  53. H. Shokrollahi, J. Magn. Magn. Mater. 426, 74 (2017). https://doi.org/10.1016/j.jmmm.2016.11.033

    Article  ADS  Google Scholar 

  54. S. Sun, H. Zeng, D.B. Robinson, S. Raoux, P.M. Rice, S.X. Wang, G. Li, J. Am. Chem. Soc. 126, 273 (2004). https://doi.org/10.1021/ja0380852

    Article  Google Scholar 

  55. J. Landers, F. Stromberg, M. Darbandi, C. Schöppner, W. Keune, H. Wende, J. Condens, Matter Phys. 27, 026002 (2014). https://doi.org/10.1088/0953-8984/27/2/026002

    Article  Google Scholar 

  56. T. Kim, S. Sim, S. Lim, M.A. Patino, J. Hong, J. Lee, T. Hyeon, Y. Shimakawa, S. Lee, J.P. Attfield, J.G. Park, Nat. Commun. 12, 6356 (2021). https://doi.org/10.1038/s41467-021-26566-4

    Article  ADS  Google Scholar 

  57. J. Lee, S.G. Kwon, J.-G. Park, T. Hyeon, Nano Lett. 15, 4337 (2015). https://doi.org/10.1021/acs.nanolett.5b00331

    Article  ADS  Google Scholar 

  58. K.L. Lopez Maldonado, P. De La Presa, M.A. De La Rubia, P. Crespo, J. De Frutos, A. Hernando, J.A. Matutes Aquino, J.T. Elizalde Galindo, J. Nanopart. Res. 16, 1 (2014). https://doi.org/10.1007/s11051-014-2482-3

    Article  Google Scholar 

  59. A. Makridis, S. Curto, G.C. Van Rhoon, T. Samaras, M. Angelakeris, J. Phys. D Appl. Phys. 52, 255001 (2019). https://doi.org/10.1088/1361-6463/ab140c

    Article  ADS  Google Scholar 

  60. D. Sakellari, S. Mathioudaki, Z. Kalpaxidou, K. Simeonidis, M. Angelakeris, J. Magn. Magn. Mater. 38, 360 (2015). https://doi.org/10.1016/j.jmmm.2014.10.042

    Article  ADS  Google Scholar 

  61. O.M. Lemine, S. Algessair, N. Madkhali, B. Al-Najar, K. El-Boubbou, Nanomaterials 13, 453 (2023). https://doi.org/10.3390/nano13030453

    Article  Google Scholar 

  62. M. Kallumadil, M. Tada, T. Nakagawa, M. Abe, P. Southern, Q.A. Pankhurst, J. Magn. Magn. Mater. 321, 1509 (2009). https://doi.org/10.1016/j.jmmm.2009.02.075

    Article  ADS  Google Scholar 

  63. D. Ortega, Q.A. Pankhurst, Nanoscience 1, 60 (2013). https://doi.org/10.1039/9781849734844-00060

    Article  Google Scholar 

  64. A. Hervault, N.T. Kim Thanh, Nanoscale 6, 11553 (2014). https://doi.org/10.1039/C4NR03482A

    Article  ADS  Google Scholar 

  65. W.J. Atkinson, I.A. Brezovich, D.P. Chakraborty, IEEE Trans. Biomed. Eng. 31, 70 (1984). https://doi.org/10.1109/tbme.1984.325372

    Article  Google Scholar 

  66. S. Dutz, R. Hergt, Nanotechnology 25, 452001 (2014). https://doi.org/10.1088/0957-4484/25/45/452001

    Article  ADS  Google Scholar 

  67. X. Chen, H. Wang, J. Shi, Z. Chen, Y. Wang, S. Gu, Y. Fu, J. Huang, J. Ding, L. Yu, Biomaterials 298, 122139 (2023). https://doi.org/10.1016/j.biomaterials.2023.122139

    Article  Google Scholar 

  68. X. Liu, Y. Zhang, Y. Wang, W. Zhu, G. Li, X. Ma, Y. Zhang, S. Chen, S. Tiwari, K. Shi, S. Zhang, Theranostics 10, 3793 (2020). https://doi.org/10.7150/thno.40805

    Article  Google Scholar 

  69. O.L. Lanier, O.I. Korotych, A.G. Monsalve, D. Wable, S. Savliwala, N.W. Grooms, C. Nacea, O.R. Tuitt, J. Dobson, Int. J. Hyperth. 36, 686 (2019). https://doi.org/10.1080/02656736.2019.1628313

    Article  Google Scholar 

  70. Y. Yang, X. Liu, Y. Lv, T.S. Herng, X. Xu, W. Xia, T. Zhang, J. Fang, W. Xiao, J. Ding, Adv. Funct. Mater. 25, 812 (2015). https://doi.org/10.1002/adfm.201402764

    Article  Google Scholar 

  71. J.T. Jang, J. Lee, J. Seon, E. Ju, M. Kim, Y.I. Kim, M.G. Kim, Y. Takemura, A.S. Arbab, K.W. Kang, K.H. Park, Adv. Mater. 30, 1704362 (2018). https://doi.org/10.1002/adma.201704362

    Article  Google Scholar 

  72. P. de la Presa, Y. Luengo, M. Multigner, R. Costo, M.P. Morales, G. Rivero, A. Hernando, J. Phys. Chem. C 116, 25602 (2012). https://doi.org/10.1021/jp310771p

    Article  Google Scholar 

  73. C. Blanco-Andujar, D. Ortega, P. Southern, Q.A. Pankhurst, N.T.K. Thanh, Nanoscale 7, 1768 (2015). https://doi.org/10.1039/C4NR06239F

    Article  ADS  Google Scholar 

  74. N. Arsalani, H. Fattahi, M. Nazarpoor, Express Polym. Lett. 4, 329 (2010). https://doi.org/10.3144/expresspolymlett.2010.42

    Article  Google Scholar 

  75. T. Ahmad, H. Bae, I. Rhee, Y. Chang, J. Lee, S. Hong, Curr. Appl. Phys. 12, 969 (2012). https://doi.org/10.1016/j.cap.2011.12.020

    Article  ADS  Google Scholar 

  76. Z. Zhao, Z. Zhou, J. Bao et al., Nat. Commun. 4, 2266 (2013). https://doi.org/10.1038/ncomms3266

    Article  ADS  Google Scholar 

  77. J.T. Jang, H. Nah, J.H. Lee, S.H. Moon, M.G. Kim, J. Cheon, Angew. Chem. Int. Ed. 48, 1234 (2009). https://doi.org/10.1002/anie.200805149

    Article  Google Scholar 

Download references

Acknowledgements

The research was funded by the Ministry of Science, Technological Development and Innovation of Republic of Serbia (Grant No. 451-03-47/2023-01/200017), and by the bilateral project between Serbia and Croatia (No 337-00-205/2019-09/06). The authors thank Dr. Vladan Kusigerski for performing magnetic measurements.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation was done by MMM, while data collection and analysis were performed by, MMM, NJO and MP. The first draft of the manuscript was written by MMM and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mirjana M. Milić.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milić, M.M., Orsini, N.J. & Požek, M. Evaluating PVP coated iron oxide particles for localized magnetic hyperthermia and MRI imaging. Appl. Phys. A 130, 275 (2024). https://doi.org/10.1007/s00339-024-07452-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07452-4

Keywords

Navigation