Skip to main content
Log in

Energy partition in underwater nanosecond laser ablation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We investigated the conversion of optical energy into mechanical energy during nanosecond laser ablation in an underwater regime. Our study analyzed the energy distribution between the shockwave, cavitation bubble, and work done by plasma impulse on the solid target, while also examining how laser intensity and absorptive coating affect this distribution. We monitored the evolution of the shockwave and cavitation bubble using the photoelasticity imaging technique and a high-speed laser stroboscopic videography system in the photoelasticity mode. Based on the experimental data, we determined the energy allocated to each process. Our result showed that shockwave energy contributed the most to the energy balance, followed by the cavitation bubble energy. The ratio of shockwave energy to cavitation bubble energy was independent of the laser pulse energy. Coating material helps to convert more optical energy to the thermal energy of the plasma plume, thus increasing the overall optical-to-mechanical energy conversion efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. M. Scius-Bertrand, L. Videau, A. Rondepierre, E. Lescoute, Y. Rouchausse, J. Kaufman, D. Rostohar, J. Brajer, L. Berthe, J. Phys. D Appl. Phys. 54, 055204 (2020)

    Article  ADS  Google Scholar 

  2. D. Glaser, C. Polese, Appl. Phys. A 123, 603 (2017)

    Article  ADS  Google Scholar 

  3. W. Charee, V. Tangwarodomnukun, C. Dumkum, J. Mater. Process. Technol. 231, 209 (2016)

    Article  Google Scholar 

  4. M. Duocastella, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, J. Appl. Phys. 106, (2009).

  5. M. Dell’Aglio, A. De Giacomo, S. Kohsakowski, S. Barcikowski, P. Wagener, A. Santagata, J. Phys. D Appl. Phys. 50, aa652a (2017)

    Article  Google Scholar 

  6. J. Theerthagiri, K. Karuppasamy, S. J. Lee, R. Shwetharani, H. S. Kim, S. K. K. Pasha, M. Ashokkumar, and M. Y. Choi, Light Sci. Appl. 11, (2022).

  7. S. Ibrahimkutty, P. Wagener, T.D.S. Rolo, D. Karpov, A. Menzel, T. Baumbach, S. Barcikowski, A. Plech, Sci. Rep. 5, 1 (2015)

    Article  Google Scholar 

  8. Y. Zhang, Y. Gu, X. Zhang, J. Shi, and J. Zhou, J. Appl. Phys. 100, (2006).

  9. R. Fabbro, J. Fournier, P. Ballard, D. Devaux, J. Virmont, J. Appl. Phys. 68, 775 (1990)

    Article  ADS  Google Scholar 

  10. A. Rondepierre, S. Ünaldi, Y. Rouchausse, L. Videau, R. Fabbro, O. Casagrande, C. Simon-Boisson, H. Besaucéle, O. Castelnau, L. Berthe, Opt. Laser Technol. 135, 1 (2021)

    Article  Google Scholar 

  11. Y. Hironaka, K. Shigemori, N. Ozaki, T. Kurita, and R. Kodama, J. Appl. Phys. 133, (2023).

  12. J. Long, M.H. Eliceiri, Y. Ouyang, Y. Zhang, X. Xie, C.P. Grigoropoulos, Opt. Lasers Eng. 137, 106334 (2021)

    Article  Google Scholar 

  13. S. Amoruso, J. Schou, J.G. Lunney, Appl. Phys. A Mater. Sci. Process. 101, 209 (2010)

    Article  ADS  Google Scholar 

  14. A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, Appl. Phys. B Lasers Opt. 68, 271 (1999).

  15. K. Mori, R. Maruyama, and K. Shimamura, J. Appl. Phys. 118, (2015).

  16. E. Amer, P. Gren, M. Sjödahl, J. Phys. D Appl. Phys. 41, 215502 (2008)

    Article  ADS  Google Scholar 

  17. P. Gregorčič, J. Zadravec, J. Možina, M. Jezeršek, Appl. Phys. A Mater. Sci. Process. 117, 353 (2014)

    Article  ADS  Google Scholar 

  18. A. Vogel, S. Busch, U. Parlitz, J. Acoust. Soc. Am. 100, 148 (1996)

    Article  ADS  Google Scholar 

  19. H. Wen, Z. Yao, Q. Zhong, Y. Tian, Y. Sun, F. Wang, Ultrason. Sonochem. 95, 106391 (2023)

    Article  Google Scholar 

  20. Y. Ito, in Photon Processing in Microelectronics and Photonics V, Proc. of SPIE Vol. 6106, 61060T (2006).

  21. T.T.P. Nguyen, R. Tanabe, Y. Ito, Appl. Phys. Lett. 102, 124103 (2013)

    Article  ADS  Google Scholar 

  22. T.T.P. Nguyen, R. Tanabe-Yamagishi, Y. Ito, Appl. Surf. Sci. 470, 250 (2019)

    Article  ADS  Google Scholar 

  23. T.T.P. Nguyen, R. Tanabe, Y. Ito, Appl. Phys. A 116, 1109 (2013)

    Article  ADS  Google Scholar 

  24. L. Berthe, R. Fabbro, P. Peyre, L. Tollier, E. Bartnicki, J. Appl. Phys. 82, 2826 (1997)

    Article  ADS  Google Scholar 

  25. S.M. O’Malley, B. Zinderman, J. Schoeffling, R. Jimenez, J.J. Naddeo, D.M. Bubb, Chem. Phys. Lett. 615, 30 (2014)

    Article  ADS  Google Scholar 

  26. S.H. Jeong, R. Greif, R.E. Russo, Appl. Surf. Sci. 127–129, 1029 (1998)

    Article  ADS  Google Scholar 

  27. T.T.P. Nguyen, R. Tanabe, Y. Ito, Opt. Laser Technol. 100, 21 (2018)

    Article  ADS  Google Scholar 

  28. T. A. Schmitz, J. Koch, D. Gnther, and R. Zenobi, J. Appl. Phys. 109, (2011).

  29. A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D.X. Hammer, G.D. Noojin, B.A. Rockwell, R. Birngruber, Appl. Phys. B Lasers Opt. 68, 271 (1999)

    Article  ADS  Google Scholar 

  30. A. Vogel, S. Busch, K. Jungnickel, R. Birngruber, Lasers Surg. Med. 15, 32 (1994)

    Article  Google Scholar 

  31. J. Long, M. Eliceiri, Z. Vangelatos, Y. Rho, L. Wang, Z. Su, X. Xie, Y. Zhang, C.P. Grigoropoulos, Opt. Express 28, 14300 (2020)

    Article  ADS  Google Scholar 

  32. M. Senegačnik, M. Jezeršek, and P. Gregorčič, Appl. Phys. A Mater. Sci. Process. 126, (2020).

  33. P. Gregorčič, J. Možina, Acta Phys Pol A 112, 1137 (2007)

    Article  ADS  Google Scholar 

  34. A. Chemin, M.W. Fawaz, D. Amans, Appl. Surf. Sci. 574, 151592 (2022)

    Article  Google Scholar 

  35. M. Heya, H. Furukawa, M. Tsuyama, H. Nakano, J. Appl. Phys. 129, 1 (2021)

    Article  Google Scholar 

  36. S. Mullick, Y.K. Madhukar, S. Kumar, D.K. Shukla, A.K. Nath, Appl. Opt. 50, 6319 (2011)

    Article  ADS  Google Scholar 

  37. A. Bogaerts, Z. Chen, Spectrochim. Acta Part B At. Spectrosc. 60, 1280 (2005)

    Article  ADS  Google Scholar 

  38. N.B. Delone, Basics of interaction of laser radiation with matter (Editions Frontieres, France, 1993), pp.332–381

    Google Scholar 

  39. E. Carpene, D. Höche, P. Schaaf, Fundamentals of laser-material interactions, in Laser processing of materials. Springer Series in Materials Science. ed. by P. Schaaf (Berlin, Heidelberg, Springer, 2010)

    Google Scholar 

  40. R.K. Singh, J. Electron. Mater. 25, 125 (1996)

    Article  ADS  Google Scholar 

  41. S.Z. Mortazavi, P. Parvin, M.R. Mousavi Pour, A. Reyhani, A. Moosakhani, S. Moradkhani, Opt. Laser Technol. 62, 32 (2014)

    Article  ADS  Google Scholar 

  42. R.F.P. Peyre, J. Mater. Sci. 3, 1421 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Thao Thi Phuong Nguyen. The first draft of the manuscript was written by Thao Thi Phuong Nguyen and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Thao Thi Phuong Nguyen.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.T.P., Tanabe, R. & Ito, Y. Energy partition in underwater nanosecond laser ablation. Appl. Phys. A 130, 298 (2024). https://doi.org/10.1007/s00339-024-07445-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07445-3

Keywords

Navigation