Skip to main content
Log in

Hardening of multi-component CdZnTeSe solid solutions: a theoretical approach

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A new theoretical approach for describing the formation of multi-component solid solutions as a mixture of their binary components is proposed. The excess Gibbs energy of formation of such solid solutions is calculated for Cd1−xZnxTe1−ySey compounds with an arbitrary concentration of the elements. There is a new thermodynamic effect of a decrease in the excess Gibbs energy in solid solutions that contain mixed binary components formed during simultaneous doping of the cationic and anionic subsystems. The excess Gibbs energy of formation of the quaternary CdZnTeSe solid solution (at additional doping with selenium) in comparison to the ternary CdZnTe compounds can reach a value of some hundreds of J/mol, which considerably exceeds the standard entropy of formation of pure binary components for the given solution. Such an effect is connected with the emergence of strong covalent bonds in the mixture of binary components of the quaternary solid solution. This may explain the hardening effect, i.e., a considerable decrease in the number of extended defects observed during the growth of CdZnTeSe crystals. The proposed theory makes it possible to quantitively predict changes in the expected defect quality of the crystals with variations in the composition of the solid solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All data generated and analysed during this study are included in this published article.

References

  1. P. Fougeres, P. Siffert, M. Hageali, J.M. Koebel, R. Regal, CdTe and Cd1-xZnxTe for nuclear detectors: facts and fictions. Nucl. Instrum. Methods Phys. Res. Sect. A 428, 38–44 (1999). https://doi.org/10.1016/S0168-9002(98)01578-2

    Article  ADS  Google Scholar 

  2. L. Verger, M. Boitel, M.C. Gentet, R. Hamelin, C. Mestais, F. Mongellaz, J. Rustique, G. Sanchez, Characterization of CdTe and CdZnTe detectors for gamma-ray imaging applications. Nucl. Instrum. Methods Phys. Res. Sect. A 458, 297–309 (2001). https://doi.org/10.1016/S0168-9002(00)00874-3

    Article  ADS  Google Scholar 

  3. U.N. Roy, G.S. Okobiah Camarda, Y. Cui et al., Growth and characterization of detector grade CdMnTe by the vertical Bridgman technique. AIP Adv. 8, 105012 (2018). https://doi.org/10.1063/1.5040362

    Article  ADS  Google Scholar 

  4. D. Alam, S.S. Nasim, S. Hasam, Recent progress in CdZnTe based room temperature detectors for nuclear radiation monitoring. Prog. Nuclear Energy 140, 103918 (2021). https://doi.org/10.1016/j.pnucene.2021.103918

    Article  Google Scholar 

  5. A. Mycielski, A. Wardak, D. Kochanowska, M. Witkowska-Baran, M. Szot, R. Jakieła et al., CdTe-based crystals with Mg, Se, or Mn as materials for X- and gamma-ray detectors: Selected physical properties. Prog. Crys. Growth. Charact. Mater. 67, 100543 (2021). https://doi.org/10.1016/j.pcrysgrow.2021.100543

    Article  Google Scholar 

  6. A. Rogalski, HgCdTe infrared detector material: history, status and outlook. Rep. Prog. Phys. 68, 2267–2336 (2005). https://doi.org/10.1088/0034-4885/68/10/R01

    Article  ADS  Google Scholar 

  7. E. Damulira, Radiation dosimetry in medicine using II–VI semiconductors. J. Radiat. Res. Appl. Sci. 15, 72–82 (2022). https://doi.org/10.1016/j.jrras.2022.06.001

    Article  Google Scholar 

  8. A. Hossain, A.E. Bolotnikov, G.S. Camarda, Y. Cui, G. Yang, K.H. Kim, R. Gul, L. Xu, R.B. James, Extended defects in CdZnTe crystals: effects on device performance. J. Cryst. Growth 312, 1795–1799 (2010). https://doi.org/10.1016/j.jcrysgro.2010.03.005

    Article  ADS  Google Scholar 

  9. D.J. Larson Jr., R.P. Silberstein, D. Di Marzo, F.C. Carlson, D. Gillies, G. Long, M. Dudley, J. Wu, Compositional, strain contour and property mapping of CdZnTe boules and wafers. Semicond. Sci. Technol. 8(6S), 911–915 (1993)

    Article  ADS  Google Scholar 

  10. U.N. Roy, G.S. Camarda, Y. Cui, R. Gul, A. Hossain, G. Yang, J. Zazvorka, V. Dedic, J. Franc, R.B. James, Role of selenium addition to CdZnTe matrix for room-temperature radiation detector applications. Sci. Rep. 9, 1620 (2019). https://doi.org/10.1038/s41598-018-38188-w

    Article  ADS  Google Scholar 

  11. U.N. Roy, G.S. Camarda, Y. Cui, R. Gul, G. Yang, J. Zazvorka, V. Dedic, J. Franc, R.B. James, Evaluation of CdZnTeSe as a high-quality gamma-ray spectroscopic material with better compositional homogeneity and reduced defects. Sci. Rep. 9, 7303 (2019). https://doi.org/10.1038/s41598-019-43778-3

    Article  ADS  Google Scholar 

  12. U.N. Roy, G.S. Camarda, Y. Cui, R.B. James, High-resolution virtual Frisch grid gamma-ray detectors based on as-grown CdZnTeSe with reduced defects. Appl. Phys. Lett. 114, 232107 (2019). https://doi.org/10.1063/1.5109119

    Article  ADS  Google Scholar 

  13. S.U. Egarievwe, U.N. Roy, E.O. Agbalagba, B.A. Harrison, C.A. Goree, E.K. Savage, R.B. James, Optimizing CdZnTeSe frisch-grid nuclear detector for gamma-ray spectroscopy. IEEE Access 8, 137530–137539 (2020). https://doi.org/10.1109/ACCESS.2020.3012040

    Article  Google Scholar 

  14. S.K. Chaudhuri, J.W. Kleppinger, O. Karadavut, R. Nag, K.C. Mandal, quaternary semiconductor Cd1−xZnxTe1−ySey for high-resolution, room-temperature gamma-ray detection, Crystals 11, #827 (2021). https://doi.org/10.3390/cryst11070827

  15. A. Yakimov, D.J. Smith, J. Choi, S.L. Araujo, Growth and characterization of detector-grade CdZnTeSe by horizontal Bridgman technique. In: Proc. SPIE 11114, Hard X-ray, Gamma-Ray, and Neutron Detector Physics XXI, 111141N (2019). https://doi.org/10.1117/12.2528542

  16. Arieh Ben-Naim (The Hebrew University, Jerusalem, Israel). Molecular theory of solutions. Oxford University Press Inc., Oxford, New York, 2006. https://doi.org/10.1021/ja0698174

  17. T. Onda, R. Ito, Thermodynamic theory of III–V semiconductor quaternary solid solutions. Jpn. J. Appl. Phys. 26(8), 1241–1251 (1987). https://doi.org/10.1143/JJAP.26.1241

    Article  ADS  Google Scholar 

  18. K.T. Jacob, K. Fitzner, The estimation of the thermodynamic properties of ternary alloys from binary data using the shortest distance composition path. Thermochim. Acta 18(2), 197–206 (1977). https://doi.org/10.1016/0040-6031(77)80019-1

    Article  Google Scholar 

  19. N. Elayech, H. Fitouri, Y. Essouda, A. Rebey, B. El Jani, Thermodynamic study of the ternary system gallium-arsenic-bismuth. Phys. Status Solid. C 12(1–2), 138–141 (2014). https://doi.org/10.1002/pssc.201400147

    Article  Google Scholar 

  20. G.R. Kirchoff, The laws of the mechanical heat theory and a use of these. Pogg. Ann. 103, 203 (1858)

    Google Scholar 

  21. P. Atkins, J. de Paula, J. Keeler, Atkins’ physical chemistry, 11th edn. (Oxford University Press, New York, 2018)

    Google Scholar 

  22. A. Münster, Classical Thermodynamics (Wiley Interscience, London, 1970). https://doi.org/10.1002/bbpc.19710750348

    Book  Google Scholar 

  23. Thermal Constants of Substances: Vol. 1–8 (Ed. V.S. Yungman), Wiley, New York (1999).

  24. CRC Handbook of Chemistry and Physics (95th ed.), CRC Press (2014)

  25. R. Gul, U.N. Roy, G.S. Camarda, A. Hossain, G. Yang, P. Vanier, V. Lordi, J. Varley, R.B. James, A comparison of point defects in Cd1-xZnxTe1-ySey crystals grown by bridgman and travelling heater methods. J. Appl. Phys. 121(12), 125705 (2017). https://doi.org/10.1063/1.4979012

    Article  ADS  Google Scholar 

  26. B. Park, Y. Kim, J. Seo, J. Byun, V. Dedic, J. Franc, A.E. Bolotnikov, R.B. James, K. Kim, Bandgap engineering of Cd1−xZnxTe1−ySey (0<x<0.27, 0<y<0.026). Nucl. Instrum. Methods Phys. Res. Sect. A 1036, 166836 (2022)

    Article  Google Scholar 

  27. U.N. Roy, G.S. Camarda, Y. Cui, R.B. James, Optimization of selenium in CdZnTeSe quaternary compound for radiation detector applications. Appl. Phys. Lett. 118, 152101 (2021). https://doi.org/10.1063/5.0048875

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study and analysis. The original draft of the manuscript was written by Dr. Sergei Naydenov, and all the authors have read and approved the final manuscript.

Corresponding author

Correspondence to S. V. Naydenov.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naydenov, S.V., Pritula, I.M. Hardening of multi-component CdZnTeSe solid solutions: a theoretical approach. Appl. Phys. A 129, 812 (2023). https://doi.org/10.1007/s00339-023-07109-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07109-8

Keywords

Navigation