Skip to main content
Log in

Reactive magnetron sputtered aluminum titanate high-к dielectric films for MIM devices

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Metal–insulator–metal (MIM) devices were fabricated with Al/Al2TiO5 stack on Pt/Ti coated SiO2/Si substrates and studied the effect of synthesized oxygen flow rate on their composition, structural and electrical properties. X-ray photoelectron spectroscopy revealed that the presence of aluminum, titanium and oxygen with the ratio 2:1:5, respectively in the projected mixed insulator Al2TiO5. XRD spectra showed that the Al2TiO5 high-k films were amorphous in nature. The average grain size observed from atomic force micrograph of the deposited high-k layer could be 25 nm. The capacitance–voltage curves showed reasonably accepted accumulation capacitance values. The films showed the dielectric constant of 19.3 and the leakage current density of 4 × 10–7 A/cm2 with good break down behavior. The leakage current in the films can be attributed to the Fowler–Nordheim mechanism due to tunneling of electron at higher electric field and Poole–Frenkel emission in the medium field region since the dielectric films contained the defects and traps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Kumar, S.V. Jagadeesh Chandra, M. Ju, D. Subhajit et al., Effects of post deposition annealing atmosphere on interfacial and electrical properties of HfO2/Ge3N4 gate stacks. Thin Solid Films 675, 16 (2019)

    Article  ADS  Google Scholar 

  2. G.F. Dong, Y. Qiu, Pentacene thin-film transistors with Ta2O5 as the gate dielectric. J. Korean Phys. Soc. 54(1), 493–497 (2009)

    Article  ADS  Google Scholar 

  3. S.V. Jagadeesh Chandra, E. Fortunato, R. Martins, C.J. Choi, Modulations in effective work function of platinum gate electrode in metal-oxide-semiconductor devices. Thin Solid Films 520, 4556 (2012)

    Article  ADS  Google Scholar 

  4. International Technology Roadmap for Semiconductors. http://public.itrs.net/

  5. M. Rahmani, M.T. Ahmadi, H.K.F. Abadi, M. Saeidmanesh, E. Akbari, R. Ismail, Analytical modeling of trilayer graphene nanoribbon Schottky-barrier FET for high-speed switching applications. Nanoscale Res. Lett. 8, 55 (2013)

    Article  ADS  Google Scholar 

  6. S.J. Ding, H.B. Chen, X.M. Cui, S. Chen, Q.Q. Sun, P. Zhou, H.L. Lu, D.W. Zhang, C. Shen, Atomic layer deposition of high-density Pt nanodots on Al2O3 film using (MeCp)Pt(Me)3 and O2 precursors for nonvolatile memory applications. Nanoscale Res. Lett. 8, 80 (2013)

    Article  ADS  Google Scholar 

  7. P.R. Chalker, M. Werner, S. Romani, R.J. Potter, K. Black, H.C. Aspinall, A.C. Jones, C.Z. Zhao, S. Taylor, P.N. Heys, Permittivity enhancement of hafnium dioxide high-k films by cerium doping. Appl. Phys. Lett. 93, 182911 (2008)

    Article  ADS  Google Scholar 

  8. G. Dalapati, T.S. Wong, Y. Li, C. Chia, A. Das, C. Mahata, H. Gao, S. Chattopadhyay, M. Kumar, H. Seng, C. Maiti, D. Chi, Characterization of epitaxial GaAs MOS capacitors using atomic layer-deposited TiO2/Al2O3 gate stack: study of Ge auto-doping and p-type Zn doping. Nanoscale Res. Lett. 7, 99 (2012)

    Article  ADS  Google Scholar 

  9. Y.T. An, C. Labbé, L. Khomenkova, M. Morales, X. Portier, F. Gourbilleau, Microstructure and optical properties of Pr3+-doped hafnium silicate films. Nanoscale Res. Lett. 8, 43 (2013). https://doi.org/10.1186/1556-276X-8-43

    Article  ADS  Google Scholar 

  10. P. Zhou, L. Ye, Q.Q. Sun, P.F. Wang, A.Q. Jiang, S.J. Ding, D.W. Zhang, Effect of concurrent joule heat and charge trapping on RESET for NbAlO fabricated by atomic layer deposition. Nanoscale Res. Lett. 8, 91 (2013). https://doi.org/10.1186/1556-276X-8-91

    Article  ADS  Google Scholar 

  11. S.H. Chen, W.S. Liao, H.C. Yang, S.J. Wang, Y.G. Liaw, H. Wang, H.S. Gu, M.C. Wang, High-performance III-V MOSFET with nano-stacked high- k gate dielectric and 3D fin-shaped structure. Nanoscale Res. Lett. 7, 431 (2012). https://doi.org/10.1186/1556-276X-7-431

    Article  ADS  Google Scholar 

  12. J.C. Wang, C.T. Lin, C.H. Chen, Gadolinium oxide nanocrystal nonvolatile memory with HfO2/Al2O3 nanostructure tunneling layers. Nanoscale Res. Lett. 7, 177 (2012). https://doi.org/10.1186/1556-276X-7-177

    Article  ADS  Google Scholar 

  13. L. Shi, Z.G. Liu, Characterization upon electrical hysteresis and thermal diffusion of TiAl3Ox dielectric film. Nanoscale Res. Lett. 6, 557 (2011). https://doi.org/10.1186/1556-276X-6-557

    Article  ADS  Google Scholar 

  14. L. Khomenkova, B.S. Sahu, A. Slaoui, F. Gourbilleau, Hf-based high-k materials for Si nanocrystal floating gate memories. Nanoscale Res. Lett. 6, 172 (2011). https://doi.org/10.1186/1556-276X-6-172

    Article  ADS  Google Scholar 

  15. F.H. Chen, J.L. Her, Y.H. Shao, Y.H. Matsuda, T.M. Pan, Structural and electrical characteristics of high-k Er2O3 and Er2TiO5 gate dielectrics for a-IGZO thin-film transistors. Nanoscale Res. Lett. 8, 18 (2013). https://doi.org/10.1186/1556-276X-8-18

    Article  ADS  Google Scholar 

  16. M.H. Jang, K.S. Jeong, K.B. Chung, J.W. Lee, M.H. Lee, M.-H. Cho, Surf. Sci. 606, 164 (2012)

    Article  Google Scholar 

  17. C. Ye, C. Zhan, J. Zhang, H. Wang, T. Deng, S. Tang, Microelectron. Reliab.. Reliab. 54, 388 (2014)

    Article  Google Scholar 

  18. T. Das, C. Mahata, C.K. Maiti, E. Miranda, G. Sutradar, P.K. Bose, Appl. Phys. Lett. 98, 022901 (2011)

    Article  ADS  Google Scholar 

  19. G. Zhou, B. Wo, Z. Li, Z. Xiao, S. Li, P. Li, Curr. Appl. Phys.. Appl. Phys. 15, 279 (2015)

    Article  ADS  Google Scholar 

  20. K. Sato, T. Nango, T. Miyagawa, T. Katagiri, K.S. Seolang, K. Ohki, J. Appl. Phys. 92, 1106 (2002)

    Article  ADS  Google Scholar 

  21. O. Auciello, W. Fan, B. Kabius, S. Saha, J.A. Carlisle, R.P.H. Chang, C. Lopez, E.A. Irene, R.A. Baragiola, Hybrid titanium–aluminum oxide layer as alternative high- gate dielectric for the next generation of complementary metal–oxide–semiconductor devices. Appl. Phys. Lett. 86, 042904 (2005)

    Article  ADS  Google Scholar 

  22. J.A. Kittl et al., High-k dielectrics for future generation memory devices. Microelectron. Eng.. Eng. 86, 1789–1795 (2009)

    Article  Google Scholar 

  23. D. Afouxenidis, R. Mazzocco, G. Vourlias, P.J. Livesley, A. Krier, W.I. Milne, O. Kolosov, G. Adamopoulos, ZnO-based thin film transistors employing aluminum titanate gate dielectrics deposited by spray pyrolysis at ambient air. ACS Appl. Mater. Interfaces 7, 7334–7341 (2015)

    Article  Google Scholar 

  24. S.Y. Lee, K.S. Bang, J.W. Lim, Sputter-deposited AlTiO thin films for semi-transparent silicon thin film solar cells. J. Electron. Mater. 43(9), 3204–3210 (2014)

    Article  ADS  Google Scholar 

  25. H. Lei, W.S. Mao, J.-L. Jun, X. Peng, L.H. Ling, L. Zhinian, Chin. Sci. Bull. 54, 1451–1454 (2009)

    Article  Google Scholar 

  26. I. Heras, E. Guillen, F. Lungwitz, G.R. Liorente, F. Munnik, E. Schumann, I. Arkona, M. Krouse, R.E. Galind, Solar Energy Mater. Solar Cells 176, 81–91 (2018)

    Article  Google Scholar 

  27. H.C. Barshilia, N. Selvakumar, K.S. Rajam, D.V. Sridhara Rao, K. Muralidharan, Thin Solid Films 516, 6071–6078 (2008)

    Article  ADS  Google Scholar 

  28. D.H. Kuo, K.H. Tzeng, Growth and properties of titania and aluminum titanate thin films obtained by RF Magnetron sputtering. Thin Solid Films 420–421, 497–502 (2002)

    Article  ADS  Google Scholar 

  29. D.H. Kuo, C.N. Shueh, Properties of aluminum titanate films prepared by chemical vapor deposition under different aluminum butoxide inputs. Thin Solid Films 478, 109–115 (2005)

    Article  ADS  Google Scholar 

  30. M. Andrianainarivelo, R.J.P. Corriu, D. Leclercq, P.H. Mutin, A. Vioux, Nonhydrolytic sol-gel process: aluminum titanate gels. Chem. Mater. 9(5), 1098–1102 (1997)

    Article  Google Scholar 

  31. L. Shi, Y.D. Xia, B. Xu, J. Yin, Z.G. Liu, Thermal stability and electrical properties of titanium–aluminum oxide ultra thin films as high-k gate dielectric materials. J. Appl. Phys. 101, 034102 (2007)

    Article  ADS  Google Scholar 

  32. C.D. Wagner, L.E. Davis, M.V. Zeller, J.A. Taylor, R.H. Raymond, L.H. Gale, Surf. Interface Anal. 3, 211 (1981)

    Article  Google Scholar 

  33. J. Koo, S. Kim, S. Jeon, H. Jeon, Y. Kim, Y. Won, J. Korean Phys. Soc. 48, 131 (2006)

    Google Scholar 

  34. R. Sanjines, H. Tang, H. Berger, F. Gozze, G. Margaritnado, F. Levy, J. Appl. Phys. 75, 2945 (1994)

    Article  ADS  Google Scholar 

  35. S.V. Jagadeesh Chandra, J. Myung-Il, Y.C. Park, J.W. Yoon, C.J. Choi, Effect of annealing ambient on structural and electrical properties of Ge metal-oxide-semiconductor capacitors with Pt gate electrode and HfO2 date dielectric. Mater. Trans. 52(1), 118 (2011)

    Article  Google Scholar 

  36. M. Chandra Sekhar, N. Nanda Kumar Reddy, B. Venkata Rao, G. Mohan Rao, S. Uthanna, Surf. Interface Anal. 46, 465 (2014)

    Article  Google Scholar 

  37. S. Chakraborty, M.K. Bera, S. Bhattacharya, C.K. Maiti, Microelectron. Eng.. Eng. 81, 188 (2005)

    Article  Google Scholar 

  38. A. Suresh, K.L. Ganapathi, S. Uthanna, Mater. Sci. Semi. Process. 57, 137–146 (2017)

    Article  Google Scholar 

  39. A. Dimitrios, M. Riccardo, V. Georgios, J.L. Peter, K. Anthony, I.M. William, K. Oleg, A. George, ZnO-based thin film transistors employing aluminum titanate gate dielectrics deposited by spray pyrolysis at ambient air. ACS Appl. Mater. Interfaces 7, 7334 (2015)

    Article  Google Scholar 

  40. S. Vikas, K.S. Jyoti, Synthesis, densification, and phase evolution studies of Al2O3–Al2TiO5–TiO2 nanocomposites and measurement of their electrical properties. J. Am. Ceram. Soc. 90(8), 2372–2378 (2007)

    Article  Google Scholar 

  41. G. Fisichella, E. Schiliro, S. Di Franco, P. Fiorenza, R. Lo Nigro, F. Roccaforte, S. Ravesi, F. Giannazzo, Interface electrical properties of Al2O3 thin films on graphene obtained by atomic layer deposition with an in situ seedlike layer. ACS Appl. Mater. Interfaces 9, 7761–7771 (2017)

    Article  Google Scholar 

  42. F.M. Li, B.C. Bayer, S. Hofmann, J.D. Dutson, S.J. Wakeham, M.J. Thwaites, W.I. Milne, A.J. Flewitt, High-k amorphous hafnium oxide films from high rate room temperature deposition. Appl. Phys. Lett. 98, 252903 (2011)

    Article  ADS  Google Scholar 

  43. J. Mu, X. Chou, Z. Ma, J. He, J. Xiong, High performance MIM capacitors for a secondary power supply application. Micromachines 9, 69 (2018)

    Article  Google Scholar 

  44. K.F. Albertin, M.A. Valle, I. Pereyra, Study of MOS capacitors with TiO2 and SiO2/TiO2 gate dielectric. J. Integr. Circuits Syst. 2(2), 89–93 (2007)

    Article  Google Scholar 

  45. S.V. Jagadeesh Chandra, J.S. Kim, K.W. Moon, C.J. Choi, Effect of post metallization annealing on structural and electrical properties of Ge metal-oxide-semiconductor (MOS) capacitors with Pt/HfO2 gate stack. Microelectron. Eng.. Eng. 89, 76 (2012)

    Article  Google Scholar 

  46. P. Kondaiah, S.V. Jagadeesh Chandra, E. Fortunato, C.J. Choi, G.M. Rao, D.V.R.K. Reddy, S. Uthanna, Substrate temperature influenced ZrO2 films for MOS devices. Surf. Int. Anal. 52(9), 541 (2020)

    Article  Google Scholar 

  47. E. Robertson, Phys. J. Appl. Phys. 28, 265 (2004)

    Article  ADS  Google Scholar 

  48. S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 2007)

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to National Nano Fabrication Centre (NNFC) and Micro and Nano Characterization Facility (MNCF) in the Centre for Nano Science and Engineering (CeNSE).

Funding

No funds or grants were received.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by [AS and SVJC], [EVKR and SU] and [AS, JC and SU]. The first draft of the manuscript was written by [AS] and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to S. V. Jagadeesh Chandra.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose. There are no conflicts of interest among the authors in the description of this work.

Data availability

The detailed analysis and discussion done in this investigation will be available to the required researchers from the corresponding author on a request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Addepalli, S., Chandra, S.V.J., Rao, E.V.K. et al. Reactive magnetron sputtered aluminum titanate high-к dielectric films for MIM devices. Appl. Phys. A 129, 793 (2023). https://doi.org/10.1007/s00339-023-07065-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07065-3

Keywords

Navigation