Skip to main content
Log in

Effects of Zn2+ substitution on the structural, morphological, DC electrical resistivity, permeability and magnetic properties of Co0.5Cu0.5-xZnxFe2O4 nanoferrite

  • Published:
Applied Physics A Aims and scope Submit manuscript

A Correction to this article was published on 12 January 2023

This article has been updated

Abstract

A strong magnet of Co0.5Cu0.5-xZnxFe2O4 (x = 0.0, 0.1, 0.2, 0.3, 0.4 and 0.5) was prepared by using the sol–gel auto-combustion technique. Using XRD, FESEM, HRTEM, FTIR, and VSM, the synthesized samples’ structural and functional group, and permeability, magnetic and DC electrical resistivity properties were studied. The structure was found to be cubic spinel. The average crystallite sizes were found to be 40–60 nm. With an increase in Zn2+ ion replacement, the lattice constant increases. Field effect scanning electron microscopy (FESEM) and HRTEM are both used to examine the surface morphology and crystalline nature. Two absorption bands around 600 and 400 cm−1 related to tetrahedral (A) and octahedral (B) interstitial sites by FTIR agree with the spinel lattice. All possible parameters are responsible for enhancing the magnetic quality identified and presented in this work. These are highly suitable for multi-layer ferrite chip inductor applications with a considerable enhancement in permeability. Magnetic properties have been explained on the basis of cation distribution. The sample’s hysteresis curves showed that the saturation magnetization and coercivity decreased after Zn2+ ions were replaced in the Co–Cu nanoferrites. The ferrite samples were semiconducting because the DC electrical resistivity decreased as temperature increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability statement

Data is available on request to the corresponding author.

Change history

References

  1. S. Yonatan Mulushoa, C.V. Kumari, R. Vemuri, K. Ephraim Babu, B.S.N. Murthy, K. Suribabu, Y. Ramakrishna, N. Murali, Physica B Condens 572, 139–147 (2019)

    Article  ADS  Google Scholar 

  2. K. Manju, S. Thankachan, D.S. Nair, E.K. Aswathy, A. Babu, A. Thomas, B.K.T. Krishna, J. Adv. Ceram. 4, 199–205 (2015)

    Article  Google Scholar 

  3. A. Ramakrishna, N. Murali, T. Wegayehu Mammo, K. Samatha, V. Veeraiah, Phys. B Condens. Matter 534, 134–140 (2018)

    Article  ADS  Google Scholar 

  4. R.C. Kambale, P.A. Shaikh, C.H. Bhosale, K.Y. Rajpure, Y.D. Kolekar, Smart Mater. Struct. 18(11), 115028 (2009)

    Article  ADS  Google Scholar 

  5. G. Raju, N. Murali, M.S.N.A. Prasad, B. Suresh, D. Apparao Babu, M. Gnana Kiran, A. Ramakrishna, M. Tulu Wegayehu, B. Kishore Babu, Mater. Sci. Energy Technol. 2, 78–82 (2019)

    Google Scholar 

  6. F. Ansari, A. Sobhani, M. Salavati-Niasari, J. Colloid Interface Sci. 514, 723–732 (2018)

    Article  ADS  Google Scholar 

  7. K. Sakthipandi, B. Ganesh Babu, G. Rajkumar, A. Hossian, M. Srinidhi Raghavan, M. Rajesh Kumar, Physica B Condens 645, 414280 (2022)

    Article  Google Scholar 

  8. K.J. Standley, Oxide magnetic materials (Oxford University Press, USA, 1972)

    Google Scholar 

  9. G. Fagherazzi, F. Garbassi, J. Appl. Crystallogr. 5(1), 18–23 (1972)

    Article  Google Scholar 

  10. V. Pissurlekar, J. J. Sci. Res. 4, 453–456 (2015)

    Google Scholar 

  11. N. Sanpo, J. Wang, C.C. Berndt, J. Nano Res. 25, 110–121 (2013)

    Article  Google Scholar 

  12. K.N. Hari, G. Aravind, D. Ravinder, T. Somaiah, B. Ravinder Reddy, Int. J. Eng. Res. Appl. 4, 137–141 (2014)

    Google Scholar 

  13. A. Ramakrishna, N. Murali, S.J. Margarette, T.W. Mammo, N.K. Joythi, B. Sailaja, C.C. Sailajaumari, K. Samatha, V. Veeraiah, Adv. Powder Technol. 29, 2601–2607 (2018)

    Article  Google Scholar 

  14. M.S. Khandekar, R.C. Kambale, J.Y. Patil, Y.D. Kolekar, S.S. Suryavanshi, J. Alloy. Compd. 509(5), 1861–1865 (2011)

    Article  Google Scholar 

  15. S.S. Abbas, I.H. Gul, S. Ameer, M. Anees, Electron. Mater. Lett. 11(1), 100–108 (2015)

    Article  ADS  Google Scholar 

  16. K. Muhammad Azhar, M. Islam ul, M. AsifIqbal, M. Ahmad, M.F. Din, G. Murtaza, I. Ahmad, M.F. Warsi, Ceram. Int 40, 3571–3577 (2014)

    Article  Google Scholar 

  17. H.R. Daruvuri, K. Chandu, N. Murali, D. Parajuli, M.P. Dasari, Inorg. Chem. Commun 143, 109794 (2022)

    Article  Google Scholar 

  18. T. Dippong, E.A. Levei, O. Cadar, Formation, structure and magnetic properties of MFe2O4@SiO2 (M = Co, Mn, Zn, Ni, Cu) Nanocompos. Mater 2021(14), 1139 (2021)

    Article  Google Scholar 

  19. M.S. Yonatan, C.V. Kumari, V. Raghavendra, K. Ephraim Babu, B.S.N. Murthy, K. Suribabu, Y. Ramakrishna, N. Murali, Phys. B Condens. Matter 572, 139–147 (2019)

    Article  ADS  Google Scholar 

  20. P.N. Vasambekar, C.B. Kolekar, A.S. Vaingankar, Mater. Chem. Phys. 60(3), 282–285 (1999)

    Article  Google Scholar 

  21. A.M.A. Henaish, O.M. Hemeda, B.I. Salem, F.S. El-Sbakhy, T. Khalass, J. Phys. Conf. Series 1253, 012025 (2019)

    Article  Google Scholar 

  22. L.G. Van Uitert, J. Chem. Phys. 24(2), 306–310 (1956)

    Article  ADS  Google Scholar 

  23. M.A. Ali, M.N.I. Khan, F.U.Z. Chowdhury, M.M. Hossain, M.Z. Rahaman, S.M. Hoque, M.A. Matin, M.M. Uddin, Results Phys. 14, 102517 (2019)

    Article  Google Scholar 

  24. P. Himakar, K. Jayadev, D. Parajuli, N. Murali, P. Taddesse, S. Yonatan Mulushoa, T. Wegayehu Mammo, B. Kishore Babu, V. Veeraiah, K. Samatha, Appl. Phys. A 127, 1–10 (2021)

    Article  Google Scholar 

  25. N. Murali, S.J. Margarette, G. Pavan Kumar, B. Sailaja, S. Yonatan Mulushoa, P. Himakar, B. Kishore Babu, V. Veeraiah, Phys. B Condens. Matter 522, 1–6 (2017)

    Article  ADS  Google Scholar 

  26. A. Ramakrishna, N. Murali, S.J. Margarette, K. Samatha, V. Veeraiah, Physica B 530, 251–257 (2018)

    Article  ADS  Google Scholar 

  27. K. Chandramouli, P. AnanthaRao, B. Suryanarayana, V. Raghavendra, S.J. Mercy, D. Parajuli, P. Taddesse, S. Yonatan Mulushoa, T. WegayehuMammo, N. Murali, J. Mater. Sci. Mater. Electron. 32, 15754–15762 (2021)

    Article  Google Scholar 

  28. K.M. Batoo, M.S. Ansari, Low temperature-fired Ni-Cu-Zn ferrite nanoparticles through auto-combustion method for multilayer chip inductor applications. Nanoscale Res. Lett. 7, 112 (2012)

    Article  ADS  Google Scholar 

  29. M. Hashim Alimuddin, S.E. Shirsath, S. Kumar, R. Kumar, A.S. Roy, J. Shah, R.K. Kotnala, Preparation and characterization chemistry of nano-crystalline Ni–Cu–Zn ferrite. J. Alloy. Compd. 549, 348–357 (2013)

    Article  Google Scholar 

  30. M.T. Wegayehu, N. Murali, Y. Mulushoa Sileshi, T. Arunamani, Phys. B Condensed Matter 531, 164–170 (2018)

    Article  ADS  Google Scholar 

  31. B. Madhavilatha, D. Parajuli, K. Jayadev, C. Komali, N. Murali, V. Veeraiah, K. Samatha, Biointerface Res. Appl. Chem. 12, 1899–1906 (2021)

    Article  Google Scholar 

  32. K. Ramanjaneyulu, B. Suryanarayana, V. Raghavendra, N. Murali, D. Parajuli, K. Chandramouli, Solid State Technol. 64, 7192–7200 (2021)

    Google Scholar 

  33. A.M. ElNahrawy, A.M. Mansour, H.A. ElAttar, E.M.M. Sakr, A.A. Soliman, A.B.A. Hammad, Impact of Mn substitution on structural, optical, and magnetic properties evolution of sodium–cobalt ferrite for opto-magnetic applications. J Mater Sci: Mater Electron 31, 6224–6232 (2020)

    Google Scholar 

  34. K. Chandramouli, B. Suryanarayana, P.V.S.K. Phanidharvarma, V. Raghavendra, K.A. Emmanuel, P. Taddesse, N. Murali, T.W. Mammo, D. Parajuli, Results in Physics 24, 104117 (2021)

    Article  Google Scholar 

  35. R. Köferstein, T. Walther, D. Hesse, S.G. Ebbinghaus, J. Solid State Chem. 213(2014), 57–64 (2014)

    Article  ADS  Google Scholar 

  36. J. Xia, X. Wu, Y. Huang, W. Wu, J. Liang, Q. Li, J. Mater. Sci. Mater. Electron. 30(12), 11682–11693 (2019)

    Article  Google Scholar 

  37. C. Nayek, K. Manna, G. Bhattacharjee, P. Murugavel, I. Obaidat, Magnetochemistry 3(2), 19 (2017)

    Article  Google Scholar 

  38. Y. Yafet, C. Kittel, Phys. Rev. 90, 295 (1952)

    Google Scholar 

  39. E. Shirsath Sagar, R.H. Kadam, M.L. Mane, A. Ghasemi, Y. Yasukawa, X. Liu, A. Morisako, J. Alloy. Compd 575, 145–151 (2013)

    Article  Google Scholar 

  40. S.V. Bhandare, R. Kumar, A.V. Anupama, M. Mishra, R. Vijaya Kumar, V.M. Jali, B. Sahoo, Mater. Chem. Phys. 251, 123081 (2020)

    Article  Google Scholar 

  41. R.H. Kadam, A.P. Birajdar, T.A. Suresh, E.S. Sagar, J. Magn Magn Mater 327, 167–171 (2013)

    Article  ADS  Google Scholar 

  42. D.R. Mane, D.D. Birajdar, P. Swati, E.S. Sagar, R.H. Kadam, J. Sol-Gel Sci. Technol. 58, 70–79 (2011)

    Article  Google Scholar 

  43. A.M. Mohammad, M.M. Mohammed, L.A. Hussein, Dig. J. Nanomater. Biostruct. 15(1), 231–241 (2020)

    Google Scholar 

  44. K.M. Somnath, E.H. Batoo, S.F. Raslan, A. Induharma, G. Kumar, J. Mater Sci 31, 7880–7888 (2020)

    Google Scholar 

  45. S. Anjana, K. Mujasam Batoo, E.H. Raslan, G. Kumar, J. Mater. Sci. Mater. Electron. 31, 16959–16967 (2020)

    Article  Google Scholar 

  46. K. Gagan, R.K. Kotnala, J. Shah, V. Kumar, A. Kumar, P. Dhiman, M. Singh, Phys. Chem. Chem. Phys. 19, 16669–16680 (2017)

    Article  Google Scholar 

  47. G.V. Priya, N. Murali, M.K. Raju, B. Krishan, D. Parajuli, P. Choppara, B.C. Sekhar, R. Verma, K.M. Batoo, P.V. Narayana, Appl. Phys. A 128, 1–8 (2022)

    Article  Google Scholar 

  48. L.M. Thorat, J.Y. Patil, D.Y. Nadargi, U.R. Ghodake, R.C. Kambale, S.S. Suryavanshi, J. Adv. Ceram. 7, 207–217 (2018)

    Article  Google Scholar 

  49. P. Monisha, P. Priyadharshini, S.S. Gomathi, K. Pushpanathan, J. Alloy. Compd. 856, 157447 (2021)

    Article  Google Scholar 

  50. J.C.R. Araújo, S. Araujo-Barbosa, A.L.R. Souza, C.A.M. Iglesias, J. Xavier, P.B. Souza, C.C. Plá Cid et al., J. Phys. Chem. Solids 154, 110051 (2021)

    Article  Google Scholar 

  51. C. Komali, N. Murali, D. Parajuli, A. Ramakrishna, Y. Ramakrishna, K. Chandramouli, Indian J. Sci. Technol. 14, 2309–2316 (2021)

    Article  Google Scholar 

  52. M. Madhu, A.V. Rao, D. Parajuli, S.Y. Mulushoa, N. Murali, Inorg. Chem. Commun. 143, 109818 (2022)

    Article  Google Scholar 

  53. M.P. Reddy, X. Zhou, A. Yann, S. Du, Q. Huang, A.M.A. Mohamed, Superlattices Microstruct. 81, 233–242 (2015)

    Article  ADS  Google Scholar 

  54. M. Islam, M. Jhahan, M.T. Khatun, M.N.I. Khan, M.J. Rahman, A. Al-Momin, M.M. Alam, J. Mater. Sci.: Mater. Electron. 32, 26173–26180 (2021)

    Google Scholar 

  55. R. Yang, X. Yu, H. Li, C. Wang, C. Wu, W. Zhang, W. Guo, J. Alloy. Compd. 851, 156907 (2021)

    Article  Google Scholar 

  56. B. R. Vergis, N. Kottam, R. H. Krishna, G. N. Anil Kumar, Materials Today Proceedings, (2021)

  57. M. Kaiser, A. Hashhash, H.E. Hassan, Appl. Phys. A 127, 1–13 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This research received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. Murali or M. P. Dasari.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Correction to affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daruvuri, H.R., Murali, N., Madhu, M. et al. Effects of Zn2+ substitution on the structural, morphological, DC electrical resistivity, permeability and magnetic properties of Co0.5Cu0.5-xZnxFe2O4 nanoferrite. Appl. Phys. A 129, 61 (2023). https://doi.org/10.1007/s00339-022-06298-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06298-y

Keywords

Navigation