Skip to main content
Log in

Effects of geometry and size of noble metal nanoparticles on enhanced refractive index sensitivity

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Efforts to develop and operate sensors in the early detection of diseases have led to the development of high-performance sensors. In this work, a structure of two particle (dimer) arrangements was modeled. We have changed the size of the nanoparticles and considered their separation distance is 10 nm. The coupled nanoparticles have been considered to detect refractive index changes in range of 1.32 to 1.42. The sensitivity of the proposed sensor was calculated, and the factors affecting the performance of the nanosensor such as geometry, material, sizes of nanoparticles, and refractive index of the environment are investigated. For this purpose, using the boundary element method, we have modeled various nanostructures that can excite plasmonic modes and coupling between these modes. It is found that nanoparticles with different sizes are more sensitive to refractive index changes than nanoparticles with the same sizes. The best result is obtained for nanoparticles with cubic geometry made of aluminum (Al) with a sensitivity of 600 \( \frac{{{\text{nm}}}}{{{\text{RIIU}}}}\). In addition, its range of applications can be easily adjusted to a wide range of ultraviolet to visible light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. L. Novotny, B. Hecht, Principles of nano-optics (Cambridge University Press, 2006)

    Book  Google Scholar 

  2. S. D’Agostino, F. Della Sala, L.C. Andreani, Dipole-excited surface plasmons in metallic nanoparticles: engineering decay dynamics within the discrete-dipole approximation. Phys. Rev. B 87, 205413 (2013)

    Article  ADS  Google Scholar 

  3. A. Bonyár, I. Csarnovics, G. Szántó, Simulation and characterization of the bulk refractive index sensitivity of coupled plasmonic nanostructures with the enhancement factor. Photonics Nanostructures-Fundam. Appl. 31, 1 (2018)

    Article  ADS  Google Scholar 

  4. M.A. García, Surface plasmons in metallic nanoparticles: fundamentals and applications. J. Phys. D Appl. Phys. 44, 283001 (2011)

    Article  Google Scholar 

  5. C.T. Cooper, M. Rodriguez, S. Blair, J.S. Shumaker-Parry, Mid-infrared localized plasmons through structural control of gold and silver nanocrescents. J. Phys. Chem. C 119, 11826 (2015)

    Article  Google Scholar 

  6. Q. Lu, T. Huang, J. Zhou, Y. Zeng, C. Wu, M. Liu, S. Yao, Limitation-induced fluorescence enhancement of carbon nanoparticles and their application for glucose detection. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 244, 118893 (2021)

    Article  Google Scholar 

  7. T. Fu, C. Du, Y. Chen, R. Zhang, Y. Zhu, L. Sun, D. Shi, Enhanced RI sensitivity and SERS performances of individual Au nanobipyramid dimers. Plasmonics 16, 485 (2021)

    Article  Google Scholar 

  8. P. Cao, M. Liang, Y. Wu, Y. Li, L. Cheng, New hybridization coupling mechanism and enhanced sensitivity in a Cu2− x S@ Au nanoparticle dimer. Nanotechnology 31, 365501 (2020)

    Article  Google Scholar 

  9. M. Mohammadnezhad, G.S. Selopal, O. Cavuslar, D. Barba, E.G. Durmusoglu, H.Y. Acar, F. Rosei, Gold nanoparticle decorated carbon nanotube nanocomposite for dye-sensitized solar cell performance and stability enhancement. Chem. Eng. J. 421, 127756 (2021)

    Article  Google Scholar 

  10. P. Aiello, S. Consalvi, G. Poce, A. Raguzzini, E. Toti, M. Palmery, I. Peluso, Dietary flavonoids: nano delivery and nanoparticles for cancer therapy. Semin. Cancer Biol. 69, 150 (2021)

    Article  Google Scholar 

  11. X. Huang, Y. Zhu, E. Kianfar, Nano biosensors: properties, applications and electrochemical techniques. J. Market. Res. 12, 1649 (2021)

    Google Scholar 

  12. L.C. Clark Jr., C. Lyons, Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N. Y. Acad. Sci. 102, 29 (1962)

    Article  ADS  Google Scholar 

  13. W.J. Fleming, D.S. Howarth, D.S. Eddy, Sensor for on-vehicle detection of engine exhaust gas composition. SAE Trans. 68, 1969 (1973)

    Google Scholar 

  14. J. Homola, S.S. Yee, G. Gauglitz, Surface plasmon resonance sensors. Sens. Actuators, B Chem. 54, 3 (1999)

    Article  Google Scholar 

  15. O. Peña-Rodríguez, U. Pal, Au@ Ag core–shell nanoparticles: efficient all-plasmonic fano-resonance generators. Nanoscale 3, 3609 (2011)

    Article  ADS  Google Scholar 

  16. I. Karube, T. Matsunaga, S. Mitsuda, S. Suzuki, Microbial electrode BOD sensors. Biotechnol. Bioeng. 19, 1535 (1977)

    Article  Google Scholar 

  17. S.K. Mishra, B.D. Gupta, Surface plasmon resonance based fiber optic pH sensor utilizing Ag/ITO/Al/hydrogel layers. Analyst 138, 2640 (2013)

    Article  ADS  Google Scholar 

  18. H. Farmani, A. Farmani, Z. Biglari, A label-free graphene-based nanosensor using surface plasmon resonance for biomaterials detection. Physica E 116, 113730 (2020)

    Article  Google Scholar 

  19. K. Lv, Q. Wei, T. Zhu, X. Zhao, Z. Li, Y. Xu, C. Yang, Sensitive flexible biosensor based on the three-dimensional layered AgNFs@ graphene nanohybrids. Sens. Actuators, B Chem. 336, 129737 (2021)

    Article  Google Scholar 

  20. M.S. Rahman, M.S. Anower, M.R. Hasan, M.B. Hossain, M.I. Haque, Design and numerical analysis of highly sensitive Au-MoS2-graphene based hybrid surface plasmon resonance biosensor. Optics Commun. 396, 36 (2017)

    Article  ADS  Google Scholar 

  21. P. Cao, H. Chen, H. Zhang, L. Cheng, T. Niu, High-sensitivity refractive index of Au@ Cu2-xS core-shell nanorods. RSC Adv. 8, 35005 (2018)

    Article  ADS  Google Scholar 

  22. A. Firoozi, R. Khordad, A. Mohammadi, T. Jalali, Eur. Phys. J. Plus 136, 1073 (2021)

    Article  Google Scholar 

  23. M. Rahmatiyar, M. Danaie, M. Afsahi, Employment of cascaded coupled resonators for resolution enhancement in plasmonic refractive index sensors. Opt. Quant. Electron. 52, 1 (2020)

    Article  Google Scholar 

  24. Z. Liang, Y. Wen, Z. Zhang, Z. Liang, Z. Xu, Y.S. Lin, Plasmonic metamaterial using metal-insulator-metal nanogratings for high-sensitive refraction index sensor. Res. Phys. 15, 102602 (2019)

    Google Scholar 

  25. Z. Omair, M.A. Talukder, Sensitivity analysis of gold nanorod biosensors for single molecule detection. Plasmonics 14, 1611 (2019)

    Article  Google Scholar 

  26. F. Sun, W. Yang, C. Du, Y. Chen, T. Fu, D. Shi, Optimal aspect ratio and excitation spectral region of LSPR sensors using individual Au dimmeric nanoplates. Plasmonics 14, 15 (2020)

    Google Scholar 

  27. N.L. Kazanskiy, S.N. Khonina, M.A. Butt, Plasmonic sensors based on metal-insulator-metal waveguides for refractive index sensing applications: a brief review. Physica E 117, 113798 (2020)

    Article  Google Scholar 

  28. H.M. Kim, D.H. Jeong, H.Y. Lee, J.H. Park, S.K. Lee, Improved stability of gold nanoparticles on the optical fiber and their application to refractive index sensor based on localized surface plasmon resonance. Opt. Laser Technol. 114, 171 (2019)

    Article  ADS  Google Scholar 

  29. M. Danaie, A. Shahzadi, Design of a high-resolution metal–insulator–metal plasmonic refractive index sensor based on a ring-shaped Si resonator. Plasmonics 14, 1453 (2019)

    Article  Google Scholar 

  30. U. Hohenester, J. Krenn, Surface plasmon resonances of single and coupled metallic nanoparticles: a boundary integral method approach. Phys. Rev. B 72, 195429 (2005)

    Article  ADS  Google Scholar 

  31. A. Bonyár, Simulation of the refractive index sensitivity of coupled plasmonic nanostructures. Procedia Eng. 168, 962–965 (2016)

    Article  Google Scholar 

  32. U. Hohenester, A. Trügler, MNPBEM - a matlab toolbox for the simulation of plasmonic nanoparticles. Comput. Phys. Commun. 183, 370–381 (2012)

    Article  ADS  Google Scholar 

  33. J. Waxenegger, A. Trügler, U. Hohenester, Plasmonics simulations with the MNPBEM toolbox: consideration of substrates and layer structures. Comput. Phys. Commun. 193, 138–150 (2015)

    Article  ADS  Google Scholar 

  34. Z. Zhao, Shape design sensitivity analysis and optimization using the boundary element method, vol. 62 (Springer Science & Business Media, 2012)

    Google Scholar 

  35. T. Takahashi, M. Tanigawa, N. Miyazawa, An enhancement of the fast time-domain boundary element method for the three-dimensional wave equation. Comput. Phys. Commun. 271, 108229 (2022)

    Article  MathSciNet  Google Scholar 

  36. C.A. Downing, E. Mariani, G. Weick, Radiative frequency shifts in nanoplasmonic dimers. Phys. Rev. B 96, 155421 (2017)

    Article  ADS  Google Scholar 

  37. A. Mohammadi, V. Sandoghdar, M. Agio, Gold, copper, silver and aluminum nanoantennas to enhance spontaneous emission. J. Comput. Theor. Nanosci. 6, 2024 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Khordad.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Firoozi, A., Khordad, R. & Rastegar Sedehi, H.R. Effects of geometry and size of noble metal nanoparticles on enhanced refractive index sensitivity. Appl. Phys. A 128, 1074 (2022). https://doi.org/10.1007/s00339-022-06226-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06226-0

Keywords

Navigation