Skip to main content

Advertisement

Log in

Nanostructured « Fe2O3/nickel-based co-catalyst» electrode materials for the photoelectrochemical oxidation of urea in wastewaters

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The electrochemical and photoelectrochemical (PEC) properties of undoped, Ni-doped hematite nanoparticles and the film Ni–Fe2O3/Ni, a photoactive semiconductor, were investigated utilizing a methodology that combined the co-precipitation approach, spin-coating method and the sputtering-assisted synthesis of Fe2O3, Ni–Fe2O3, and Ni–Fe2O3/Ni, respectively. The excellent oxygen evolution reaction (OER) response was observed for 15% Ni–Fe2O3. The super capacitive properties of Ni–Fe2O3 at a scan rate of 10 mVs−1show a maximum super capacitance of 914.76 F/g. The electrochemical oxidation of water achieved by Ni–Fe2O3@GCE modified electrode exhibited the current density of 1.5 mA/cm2 at 1.5 V vs. the reversible hydrogen electrode (RHE) for 15% of Ni and reveals enhanced specific capacitance of 914.76 F/g. In another part, this work reported the photoelectrochemical (PEC) properties of undoped and 15% Ni–Fe2O3 photoanodes. A photocurrent 1.8 and 0.35 µA/cm2 at 1.5 V vs. RHE was obtained for undoped and 15% Ni–doped hematite, respectively. It is worth to note that the oxidation current density of 15% Ni–Fe2O3/Ni reached 300 µA/cm2 at 1.6 V, which is greater than three times of the highest current density than in water (100 µA/cm2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Annamalai, A. Subramanian, U. Kang, H. Park, S.H. Choi, J.S. Jang, Activation of hematite photoanodes for solar water splitting: effect of FTO deformation. J. Phys. Chem. C 119(7), 3810–3817 (2015)

    Google Scholar 

  2. F. Wang, C. Di Valentin, G. Pacchioni, Doping of WO3 for photocatalytic water splitting: hints from density functional theory. J. Phys. Chem. C 116(16), 8901–8909 (2012)

    Google Scholar 

  3. S.S. Dunkle, R.J. Helmich, K.S. Suslick, BiVO4 as a visible-light photocatalyst prepared by ultrasonic spray pyrolysis. J. Phys. Chem. C 113(28), 11980–11983 (2009)

    Google Scholar 

  4. C. Wang, Z. Chen, H. Jin, C. Cao, J. Li, Z. Mi, Enhancing visible-light photoelectrochemical water splitting through transition-metal doped TiO2 nanorod arrays. J. Mater. Chem. A2(42), 17820–17827 (2014)

    Google Scholar 

  5. Y. Hu, X. Yan, Y. Gu, X. Chen, Z. Bai, Z. Kang, Y. Zhang, Large-scale patterned ZnO nanorod arrays for efficient photoelectrochemical water splitting. Appl. Surf. Sci. 339, 122–127 (2015)

    ADS  Google Scholar 

  6. D. Wang, Y. Chen, Y. Zhang, X. Zhang, N. Suzuki, C. Terashima, Boosting photoelectrochemical performance of hematite photoanode with TiO2 underlayer by extremely rapid high temperature annealing. Appl. Surf. Sci. 422, 913–920 (2017)

    ADS  Google Scholar 

  7. V.C. Janu, G. Bahuguna, D. Laishram, K.P. Shejale, N. Kumar, R.K. Sharma, R. Gupta, Surface fluorination of α-Fe2O3 using selectfluor for enhancement in photoelectrochemical properties. Sol. Energy Mater. Sol. Cells 174, 240–247 (2018)

    Google Scholar 

  8. M. Mishra, D.M. Chun, α-Fe2O3 as a photocatalytic material: a review. Appl. Catal. A 498, 126–141 (2015)

    Google Scholar 

  9. A. Karrab, L. Lecarme, J.C. Lepretre, A. Nourdine, J. Deseure, S. Ammar, Fe2O3 and Fe2O3/Ni(OH)2 photoanodes for highly efficient photoelectrochemical water splitting and urea oxidation. Appl. Phys. A 128(6), 1–11 (2022)

    Google Scholar 

  10. T. Tokubuchi, R.I. Arbi, P. Zhenhua, K. Katayama, A. Turak, W.Y. Sohn, Enhanced photoelectrochemical water splitting efficiency of hematite (α-Fe2O3)-based photoelectrode by the introduction of maghemite (γ-Fe2O3) nanoparticles. J. Photochem. Photobiol. A Chem. 410, 113179 (2021)

    Google Scholar 

  11. E.V. Shevchenko, D.V. Talapin, H. Schnablegger, A. Kornowski, Ö. Festin, P. Svedlindh, H. Weller, Study of nucleation and growth in the organometallic synthesis of magnetic alloy nanocrystals: the role of nucleation rate in size control of CoPt3 nanocrystals. J. Am. Chem. Soc. 125(30), 9090–9101 (2003)

    Google Scholar 

  12. H. Dong, H. Zhang, Y. Xu, C. Zhao, Facile synthesis of α-Fe2O3 nanoparticles on porous human hair-derived carbon as improved anode materials for lithium ion batteries. J. Power Sources 300, 104–111 (2015)

    ADS  Google Scholar 

  13. G. Zhang, Y. Shi, H. Wang, L. Jiang, X. Yu, S. Jing, P. Tsiakaras, A facile route to achieve ultrafine Fe2O3 nanorods anchored on graphene oxide for application in lithium-ion battery. J. Power Sources 416, 118–124 (2019)

    ADS  Google Scholar 

  14. M. Ribeiro, M. Boudoukhani, E. Belmonte-Reche, N. Genicio, S. Sillankorva, J. Gallo, M. Bañobre-López, Xanthan-Fe3O4 nanoparticle composite hydrogels for non-invasive magnetic resonance imaging and magnetically assisted drug delivery. ACS Appl. Nano Mater. 4(8), 7712–7729 (2021)

    Google Scholar 

  15. A. Ahmadivand, B. Gerislioglu, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, N. Pala, Rapid detection of infectious envelope proteins by magnetoplasmonic toroidal metasensors. ACS Sens. 2(9), 1359–1368 (2017)

    Google Scholar 

  16. M. Guan, X. Mu, H. Zhang, Y. Zhang, J. Xu, Q. Li, S. Li, Spindle-like Fe3O4 nanoparticles for improving sensitivity and repeatability of giant magnetoresistance biosensors. J. Appl. Phys. 126(6), 064505 (2019)

    ADS  Google Scholar 

  17. A. Tomitaka, H. Arami, A. Ahmadivand, N. Pala, A.J. McGoron, Y. Takemura, M. Nair, Magneto-plasmonic nanostars for image-guided and NIR-triggered drug delivery. Sci. Rep. 10(1), 1–10 (2020)

    Google Scholar 

  18. F. Altaf, S. Ahmed, D. Dastan, R. Batool, Z.U. Rehman, Z. Shi, K. Jacob, Novel sepiolite reinforced emerging composite polymer electrolyte membranes for high-performance direct methanol fuel cells. Mater. Today Chem. 24, 100843 (2022)

    Google Scholar 

  19. M.S. Wu, F.Y. Chen, Y.H. Lai, Y.J. Sie, Electrocatalytic oxidation of urea in alkaline solution using nickel/nickel oxide nanoparticles derived from nickel-organic framework. Electrochim. Acta 258, 167–174 (2017)

    Google Scholar 

  20. L. Bian, Q. Du, M. Luo, L. Qu, M. Li, Monodisperse nickel nanoparticles supported on multi-walls carbon nanotubes as an effective catalyst for the electro-oxidation of urea. Int. J. Hydrog. Energy 42(40), 25244–25250 (2017)

    Google Scholar 

  21. N. Kakati, J. Maiti, K.S. Lee, B. Viswanathan, Y.S. Yoon, Hollow sodium nickel fluoride nanocubes deposited MWCNT as an efficient electrocatalyst for urea oxidation. Electrochim. Acta 240, 175–185 (2017)

    Google Scholar 

  22. A. Ahmadi, A. Nezamzadeh-Ejhieh, A comprehensive study on electrocatalytic current of urea oxidation by modified carbon paste electrode with Ni (II)-clinoptilolite nanoparticles: experimental design by response surface methodology. J. Electroanal. Chem. 801, 328–337 (2017)

    Google Scholar 

  23. D.E. Glass, V. Galvan, G.S. Prakash, The effect of annealing temperature on nickel on reduced graphene oxide catalysts on urea electrooxidation. Electrochim. Acta 253, 489–497 (2017)

    Google Scholar 

  24. R.L. King, G.G. Botte, Hydrogen production via urea electrolysis using a gel electrolyte. J. Power Sources 196(5), 2773–2778 (2011)

    ADS  Google Scholar 

  25. G. Das, R.M. Tesfaye, Y. Won, H.H. Yoon, NiO-Fe2O3 based graphene aerogel as urea electrooxidation catalyst. Electrochim. Acta 237, 171–176 (2017)

    Google Scholar 

  26. D. Wang, W. Yan, S.H. Vijapur, G.G. Botte, Electrochemically reduced graphene oxide–nickel nanocomposites for urea electrolysis. Electrochim. Acta 89, 732–736 (2013)

    Google Scholar 

  27. N.S. Arul, D. Mangalaraj, P.N. Kumar, E. Kim, P. Devi, J.I. Han, Synthesis and characterization of α-Fe2O3 micro-/nanorods-modified glassy carbon electrode for electrochemical sensing of nitrobenzene. Ceram. Int. 41(4), 5568–6557 (2015)

    Google Scholar 

  28. F.A. Harraz, A.A. Ismail, S.A. Al-Sayari, A. Al-Hajry, M.S. Al-Assiri, Highly sensitive amperometric hydrazine sensor based on novel α-Fe2O3/crosslinked polyaniline nanocomposite modified glassy carbon electrode. Sens. Actuators, B Chem. 234, 573–582 (2016)

    Google Scholar 

  29. D. Dastan, K. Shan, A. Jafari, F. Gity, X.T. Yin, Z. Shi, L. Ansari, Influence of nitrogen concentration on electrical, mechanical, and structural properties of tantalum nitride thin films prepared via DC magnetron sputtering. Appl. Phys. A 128(5), 1–16 (2022)

    Google Scholar 

  30. F. Bouhjar, L. Derbali, B. Marí, B. Bessais, Photo-deposition of cobalt-phosphate group modified hematite for efficient water splitting. Sol. Energy Mater. Sol. Cells 195, 241–249 (2019)

    Google Scholar 

  31. Y.W. Phuan, E. Ibrahim, M.N. Chong, T. Zhu, B.K. Lee, J.D. Ocon, E.S. Chan, In situ Ni-doping during cathodic electrodeposition of hematite for excellent photoelectrochemical performance of nanostructured nickel oxide-hematite pn junction photoanode. Appl. Surf. Sci. 392, 144–152 (2017)

    ADS  Google Scholar 

  32. J. Parhizkar, M.H. Habibi, Synthesis, characterization and photocatalytic properties of iron oxide nanoparticles synthesized by sol-gel autocombustion with ultrasonic irradiation. Nanochem. Res. 2(2), 166–171 (2017)

    Google Scholar 

  33. M. Asadzadeh, F. Tajabadi, D. Dastan, P. Sangpour, Z. Shi, N. Taghavinia, Facile deposition of porous fluorine doped tin oxide by Dr. Blade method for capacitive applications. Ceram. Int. 47(4), 5487–5494 (2021)

    Google Scholar 

  34. L. Liang, Z. Shi, X. Tan, S. Sun, M. Chen, D. Dastan, L. Cao, Largely improved breakdown strength and discharge efficiency of layer-structured nanocomposites by filling with a small loading fraction of 2D zirconium phosphate nanosheets. Adv. Mater. Interfaces 9(3), 2101646 (2022)

    Google Scholar 

  35. A.S. Al-Kady, M. Gaber, M.M. Hussein, E.Z.M. Ebeid, Structural and fluorescence quenching characterization of hematite nanoparticles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 83(1), 398–405 (2011)

    ADS  Google Scholar 

  36. A. Karrab, R. Bensimon, D. Muller, S. Bastide, C. Cachet-Vivier, S. Ammar, Photoelectrochemical and electrochemical urea oxidation with microwave-assisted synthesized Co-Fe2O3@ NiO core–shell nanocomposites. Carbon Lett 32, 1–17 (2022)

    Google Scholar 

  37. R. Suresh, R. Prabu, J.A. Vijayara, K. Giribabu, A. Stephen, V. Narayanan, Facile synthesis of cobalt doped hematite nanospheres: magnetic and their electrochemical sensing properties. Mater. Chem. Phys. 134(2–3), 590–596 (2012)

    Google Scholar 

  38. A.E. Morales, E.S. Mora, U. Pal, Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures. Revista mexicana de física 53(5), 18–22 (2007)

    Google Scholar 

  39. B.J. Rani, G. Ravi, S. Ravichandran, V. Ganesh, F. Ameen, A. Al-Sabri, R. Yuvakkumar, Electrochemically active XWO4 (X= Co, Cu, Mn, Zn) nanostructure for water splitting applications. Appl. Nanosci. 8(5), 1241–1258 (2018)

    ADS  Google Scholar 

  40. B.J. Rani, G. Ravi, R. Yuvakkumar, Z.M. Hasan, S. Ravichandran, S.I. Hong, Binder free, robust and scalable CuO@ GCE modified electrodes for efficient electrochemical water oxidation. Mater. Chem. Phys. 239, 122321 (2020)

    Google Scholar 

  41. A. Abdi, M. Trari, Investigation on photoelectrochemical and pseudo-capacitance properties of the non-stoichiometric hematite α-Fe2O3 elaborated by sol–gel. Electrochim. Acta 111, 869–875 (2013)

    Google Scholar 

  42. M.T. Lee, J.K. Chang, Y.T. Hsieh, W.T. Tsai, Annealed Mn–Fe binary oxides for supercapacitor applications. J. Power Sources 185(2), 1550–1556 (2008)

    ADS  Google Scholar 

  43. Y. Xu, W. Tu, B. Zhang, S. Yin, Y. Huang, M. Kraft, R. Xu, Nickel nanoparticles encapsulated in few-layer nitrogen-doped graphene derived from metal–organic frameworks as efficient bifunctional electrocatalysts for overall water splitting. Adv. Mater. 29(11), 1605957 (2017)

    Google Scholar 

  44. X. Zou, Y. Liu, G.D. Li, Y. Wu, D.P. Liu, W. Li, X. Zou, Ultrafast formation of amorphous bimetallic hydroxide films on 3D conductive sulfide nanoarrays for large-current-density oxygen evolution electrocatalysis. Adv. Mater. 29(22), 1700404 (2017)

    Google Scholar 

  45. R.A. Hameed, R.H. Tammam, Nickel oxide nanoparticles grown on mesoporous carbon as an efficient electrocatalyst for urea electro-oxidation. Int. J. Hydrog. Energy 43(45), 20591–20606 (2018)

    Google Scholar 

  46. C. Ling, L.Q. Zhou, H. Jia, First-principles study of crystalline CoWO4 as oxygen evolution reaction catalyst. RSC Adv. 4(47), 24692–24697 (2014)

    ADS  Google Scholar 

  47. B.J. Rani, M.P. Kumar, G. Ravi, S. Ravichandran, R.K. Guduru, R. Yuvakkumar, Electrochemical and photoelectrochemical water oxidation of solvothermally synthesized Zr-doped α-Fe2O3 nanostructures. Appl. Surf. Sci. 471, 733–744 (2019)

    ADS  Google Scholar 

  48. Z. Lu, Z. Chang, J. Liu, X. Sun, Stable ultrahigh specific capacitance of NiO nanorod arrays. Nano Res. 4(7), 658–665 (2011)

    Google Scholar 

  49. S. Yin, X. Wang, Z. Mou, Y. Wu, H. Huang, M. Zhu, P. Yang, Synergistic contributions by decreasing overpotential and enhancing charge-transfer in α-Fe2O3/Mn3O4/graphene catalysts with heterostructures for photocatalytic water oxidation. Phys. Chem. Chem. Phys. 16(23), 11289–11296 (2014)

    Google Scholar 

  50. D. Chu, K. Li, A. Liu, J. Huang, C. Zhang, P. Yang, C. Lu, Zn-doped hematite modified by graphene-like WS2: a p-type semiconductor hybrid photocathode for water splitting to produce hydrogen. Int. J. Hydrog. Energy 43(15), 7307–7316 (2018)

    Google Scholar 

  51. A.H. Alami, M.A. Abdelkareem, M. Faraj, K. Aokal, N. Al Safarini, Titanium dioxide-coated nickel foam photoelectrodes for direct urea fuel cell applications. Energy 208, 118253 (2020)

    Google Scholar 

  52. M. Sookhakian, Y.M. Amin, S. Baradaran, M.T. Tajabadi, A.M. Golsheikh, W.J. Basirun, A layer-by-layer assembled graphene/zinc sulfide/polypyrrole thin-film electrode via electrophoretic deposition for solar cells. Thin Solid Films 552, 204–211 (2014)

    ADS  Google Scholar 

  53. D. Chen, Z. Liu, S. Zhang, Enhanced PEC performance of hematite photoanode coupled with bimetallic oxyhydroxide NiFeOOH through a simple electroless method. Appl. Catal. B 265, 118580 (2020)

    Google Scholar 

  54. R.H. Tammam, M.M. Saleh, On the electrocatalytic urea oxidation on nickel oxide nanoparticles modified glassy carbon electrode. J. Electroanal. Chem. 794, 189–196 (2017)

    Google Scholar 

  55. H.M. Abd El-Lateef, N.F. Almulhim, A.A. Alaulamie, M.M. Saleh, I.M. Mohamed, Design of ultrafine nickel oxide nanostructured material for enhanced electrocatalytic oxidation of urea: physicochemical and electrochemical analyses. Colloids Surf., A 585, 124092 (2020)

    Google Scholar 

  56. F. Guo, K. Ye, M. Du, X. Huang, K. Cheng, G. Wang, D. Cao, Electrochemical impedance analysis of urea electro-oxidation mechanism on nickel catalyst in alkaline medium. Electrochim. Acta 210, 474–482 (2016)

    Google Scholar 

  57. G. Wang, Y. Ling, X. Lu, H. Wang, F. Qian, Y. Tong, Y. Li, Solar driven hydrogen releasing from urea and human urine. Energy Environ. Sci. 5(8), 8215–8219 (2012)

    Google Scholar 

  58. T. Yoshida, J. Zhang, D. Komatsu, S. Sawatani, H. Minoura, T. Pauporté, H. Yanagi, Electrodeposition of inorganic/organic hybrid thin films. Adv. Func. Mater. 19(1), 17–43 (2009)

    Google Scholar 

Download references

Acknowledgements

The present work was supported by the Research Funds of Electrochemistry, Materials and Environment Research Unit UREME (UR17ES45), Faculty of Sciences Gabes University, Tunisia and Institute of Chemistry and Materials Paris-Est (ICMPE, UMR7182) Thiais, University of Creteil, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Assia Karrab.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karrab, A., Bensimon, R., Muller-Bouvet, D. et al. Nanostructured « Fe2O3/nickel-based co-catalyst» electrode materials for the photoelectrochemical oxidation of urea in wastewaters. Appl. Phys. A 128, 1067 (2022). https://doi.org/10.1007/s00339-022-06221-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06221-5

Keywords

Navigation