Skip to main content

Advertisement

Log in

Linear/nonlinear optical, elastic-mechanical properties, and radiation buildup factors of boro-bariofluoride glasses

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Linear/nonlinear optical, elastic-mechanical properties, and gamma-ray buildup factors of 30BaF2–15CaO–15Na2O–(40-x)B2O3xNiO: x = 0–1.5 mol% in steps of 0.3 mol% glasses were investigated. Both molar refractivity (Rmolar) and molar polarizability (αmolar) were reduced, while refractive loss (Rloss) and optical transmission (Toptical) were in inverse trends with the improvement of NiO content in glass network. The optical susceptibility (χ3) and nonlinear refractive index \(\left( {n_{{2}}^{{{\text{optical}}}} } \right)\) having the same trend. These results may be due to the increasing in the non-bridging oxygen’s (NBOs) in glass networks. Values of Poisson’s ratio (σ) were ranged between 0.414 and 0.409. Young’s modulus values were calculated to be between 33.58 and 36.09 GPa. The micro-hardness (H) was found to increase from 20.1 to 21.4 MPa as the molar fraction of NiO is increased in the glassy network. The energy absorption (EABF) and exposure (EBF) buildup factors are increasing with the mean free path (MFP) increases as radiation ray is penetrating the sample. The ratio of EBF (normalized with respect to EBF) for sample with NiO = 0.9 mol% were 1.0: 10−4: 10−7: 10−10: 0: 0: 0: 0: 0 for MPF = 40-1, respectively. In addition, the EABF and EBF values are enhanced as the molar fraction of NiO increased. Therefore, the addition of NiO to the glass network makes it more valuable in shielding performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Relevant research data are included in the text of the work.

References

  1. M.I. Sayyed, M.A. Abdo, H. Elhosiny Ali, M.S. Sadeq, Transparent and radiation shielding effective Na2O-CrO3 borate glasses via AgI additives. Ceram. Int. (2022). https://doi.org/10.1016/j.ceramint.2022.07.035

    Article  Google Scholar 

  2. M.A. Marzouk, H.A. ElBatal, A.M. Abdel Ghany, F.M. Ezz Eldin, Ultraviolet, visible, ESR, and infrared spectroscopic studies of CeO2-doped lithium phosphate glasses and effect of gamma irradiation. J. Mol. Struct. 997(1–3), 94–102 (2011)

    ADS  Google Scholar 

  3. F.H. El-Batal, E.M. Khalil, Y.M. Hamdy, H.M. Zidan, M.S. Aziz, A.M. Abdelghany, FTIR spectral analysis of corrosion mechanisms in soda lime silica glasses doped with transition metal oxides. SILICON 2(1), 41–47 (2010)

    Google Scholar 

  4. W.I. Mortada, I.M.M. Kenawy, A.M. Abdelghany, A.M. Ismail, A.F. Donia, K.A. Nabieh, Determination of Cu2+, Zn2+ and Pb2+ in biological and food samples by FAAS after preconcentration with hydroxyapatite nanorods originated from eggshell. Mater. Sci. Eng., C 52, 288–296 (2015)

    Google Scholar 

  5. A.H. Hammad, A.M. Abdelghany, Optical and structural investigations of zinc phosphate glasses containing vanadium ions. J. Non-Cryst. Solids 433, 14–19 (2016)

    ADS  Google Scholar 

  6. G.M. Asnag, A.H. Oraby, A.M. Abdelghany, Green synthesis of gold nanoparticles and its effect on the optical, thermal and electrical properties of carboxymethyl cellulose. Compos. B Eng. 172, 436–446 (2019)

    Google Scholar 

  7. A.M. Ibrahim, A.H. Hammad, A.M. Abdelghany, G.O. Rabie, Mixed alkali effect and samarium ions effectiveness on the structural, optical and non-linear optical properties of borate glass. J. Non-Cryst. Solids 495, 67–74 (2018)

    ADS  Google Scholar 

  8. A. Ibrahim, M.S. Sadeq, Influence of cobalt oxide on the structure, optical transitions and ligand field parameters of lithium phosphate glasses. Ceram. Int. 47, 28536–28542 (2021)

    Google Scholar 

  9. B. Alshahrani, Z.A. Alrowaili, S.J. Alsufyani, I.O. Olarinoye, Ch. Mutuwong, M.S. Al-Buriahi, Determining the optical properties and simulating the radiation shielding parameters of Dy3+ doped lithium yttrium borate glasses. Optik–Int. J. Light. Electron. Optics. 250, 168318 (2022)

    Google Scholar 

  10. F. Al-Hazmi, S.F. Mansour, M.S. AlHammad, M.A. Abdo, M.S. Sadeq, Impact of sunlight on the optical properties and ligand field parameters of nickel borosilicate glasses. Ceram. Int. 47, 8566–8572 (2021)

    Google Scholar 

  11. M.S. Sadeq, M.A. Abdo, Effect of iron oxide on the structural and optical properties of alumino-borate glasses. Ceram. Int. 47, 2043–2049 (2021)

    Google Scholar 

  12. S.F. Mansour, S. Wageh, M.F. Alotaibi, M.A. Abdo, M.S. Sadeq, Impact of bismuth oxide on the structure, optical features and ligand field parameters of borosilicate glasses doped with nickel oxide. Ceram. Int. 47, 21443–21449 (2021)

    Google Scholar 

  13. M.S. Sadeq, H.Y. Morshidy, Effect of samarium oxide on structural, optical and electrical properties of some alumino-borate glasses with constant copper chloride. J. Rare Earths 38, 770–775 (2020)

    Google Scholar 

  14. A.M. Abdel-Ghany, A.S. Abu-Khadra, M.S. Sadeq, Influence of Fe cations on the structural and optical properties of alkali alkaline borate glasses. J. Non-Cryst. Solids. 548, 120320 (2020)

    Google Scholar 

  15. S. Thakur, V. Thakur, A. Kaur, L. Singh, Structural, optical and thermal properties of nickel doped bismuth borate glasses. J. Non-Cryst. Solids. 512, 60–71 (2019)

    ADS  Google Scholar 

  16. H. Wen, P.A. Tanner, B.M. Cheng, Optical properties of 3dN transition metal ion-doped lead borate glasses. Mater. Res. Bull. 83, 400–407 (2016)

    Google Scholar 

  17. A.L. Martins Jr., C.A.C. Feitosa, W.Q. Santos, C. Jacinto, C.C. Santos, Influence of BaX2 (X = Cl, F) and Er2O3 concentration on the physical and optical properties of barium borate glasses. Physica B. 558, 146–153 (2019)

    ADS  Google Scholar 

  18. M.I. Sayyed, A. Ibrahim, M.A. Abdo, M.S. Sadeq, The combination of high optical transparency and radiation shielding effectiveness of zinc sodium borate glasses by tungsten oxide additions. J. Alloy. Compd. 904, 164037 (2022)

    Google Scholar 

  19. W. Marltan, P.V. Rao, H.O. Tekin, M.I. Sayyed, R. Klement, D. Galusek, N. Veeraiah, Analysis of red mud doped Bi2O3-B2O3-BaO glasses for application as glass solder in radiation shield repair using MCNPX simulation. Ceram. Int. 45(6), 7619–7626 (2019)

    Google Scholar 

  20. M. Fidan, A. Acikgoz, G. Demircan, D. Yilmaz, B. Aktas, Optical, structural, physical, and nuclear shielding properties, and albedo parameters of TeO2–BaO–B2O3–PbO–V2O5 glasses. J. Phys. Chem. Solids. 163, 110543 (2022)

    Google Scholar 

  21. B. Aktas, S. Yalcin, K. Dogru, Z. Uzunoglu, D. Yilmaz, Structural and radiation shielding properties of chromium oxide doped borosilicate glass. Radiat. Phys. Chem. 156, 144–149 (2019)

    ADS  Google Scholar 

  22. M.S. Sadeq, I.I. Bashter, S.M. Salem, S.F. Mansour, H.A. Saudi, M.I. Sayyed, A.G. Mostafa, Enhancing the gamma-ray attenuation parameters of mixed bismuth/barium borosilicate glasses: using an experimental method, Geant4 code and XCOM software. Prog. Nucl. Energy 145, 104124 (2022)

    Google Scholar 

  23. M.S. Sadeq, B.O. El-bashir, A.H. Almuqrin, M.I. Sayyed, The tungsten oxide within phosphate glasses to investigate the structural, optical, and shielding properties variations. J. Mater. Sci.: Mater. Electron. 32, 12402–12413 (2021)

    Google Scholar 

  24. M.I. Sayyed, T.A. Elmosalami, M.A. Abdo, M.S. Sadeq, Optical and radiation shielding features of NiO-CdO-BaO borosilicate glasses. Phys. Scr. 97, 085802 (2022)

    ADS  Google Scholar 

  25. O. Görke, A.T. Shah, N.V. Kudrevatykh, A.S. Abouhaswa, Y.S. Rammah, Synthesis, physical, optical characteristics and ionizing radiation resistance of newly boro-bariofluoride/sodium/calcium/nickel glasses: B2O3·BaF2·CaO·Na2O·NiO. J. Inorg. Organomet. Polym. Mater. (2022). https://doi.org/10.1007/s10904-022-02444-4

    Article  Google Scholar 

  26. “American National Standard, Gamma-Ray Attenuation Coefficients and Buildup Factors for Engineering Materials, ANSI/ANS-6.4.3, (1991)

  27. M.S. Al-Buriahi, F.I. El-Agawany, C. Sriwunkum, H. Arslan, B.T. Tonguc, R. El-Mallawany, Y.S. Rammah, Influence of Bi2O3/PbO on nuclear shielding characteristics of lead-zinc-tellurite glasses. Physica B 581, 411946 (2020)

    Google Scholar 

  28. M.S. Al-Buriahi, B.T. Tonguc, Study on gamma-ray buildup factors of bismuth borate glasses. Appl. Phys. A. 125(7), 482 (2019)

    ADS  Google Scholar 

  29. E. Şakar, Ö.F. Özpolat, B. Alım, M.I. Sayyed, M. Kurudirek, Phy-X/PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat. Phys. Chem. 166, 108496 (2020)

    Google Scholar 

  30. M.K. Halimah, M.F. Faznny, M.N. Azlan, H.A.A. Sidek, Optical basicity and electronic polarizability of zinc borotellurite glass doped La3+ ions. Results. Phys. 7, 581–589 (2017)

    ADS  Google Scholar 

  31. H.H. Somaily, H. Algarni, Y.S. Rammah, A. Alalawi, C. Mutuwong, M.S. Al-Buriahi, The effects of V2O5/K2O substitution on linear and nonlinear optical properties and the gamma ray shielding performance of TVK glasses. Ceram. Int. 47, 1012–1020 (2021)

    Google Scholar 

  32. R. El-Mallawany, Y.S. Rammah, F.I. El-Agawany, S.M. Lima, C. Mutuwong, M.S. Al-Buriahi, Evaluation of optical features and ionizing radiation shielding competences of TeO2–Li2O (TL) glasses via Geant4 simulation code and Phy-X/PSD program. Optic. Mater. 108, 110394 (2020)

    Google Scholar 

  33. F. Mohd Fudzi, H.M. Kamari, A. Abd Latif, A. Muhammad Noorazlan, Linear optical properties of zinc borotellurite glass doped with lanthanum oxide nanoparticles for optoelectronic and photonic application. J. Nanomater. 2017, 1–10 (2017)

    Google Scholar 

  34. A.H. Khafagy, A.A. El-Adawy, A.A. Higazy, S. El-Rabaie, A.S. Eid, Studies of some mechanical and optical properties of (70–x)TeO2 + 15B2O3 + 15P2O5 + xLi2O glasses. J. Non. Cryst. Solids 354, 3152–3158 (2008)

    ADS  Google Scholar 

  35. G. Saffarini, H. Schmitt, H. Shanak, J. Nowoczin, J. Müller, Optical band gap in relation to the average coordination number in Ge-S-Bi thin films. Phys. Status. Solidi. Basic. Res. 239, 251–256 (2003)

    ADS  Google Scholar 

  36. S.A. Umar, M.K. Halimah, K.T. Chan, A.A. Latif, Polarizability, optical basicity nd electric susceptibility of Er3+ doped silicate borotellurite glasses. J. Non-Crystalline. Solids. 471, 101–109 (2017)

    ADS  Google Scholar 

  37. H. Ticha, L. Tichy, Semiempirical relation between non-linear susceptibility (refractive index), linear refractive index and optical gap and its application to amorphous chalcogenides. J. Optoelectron. Adv. Mater. 4, 381–386 (2002)

    Google Scholar 

  38. Z.Y. Khattari, M.S. Al-Buriahi, Monte Carlo simulations and Phy-X/PSD study of radiation shielding effectiveness and elastic properties of barium zinc aluminoborosilicate glasses. Radiat. Phys. Chem. 195, 110091 (2022)

    Google Scholar 

  39. A. Makishima, Y. Tamura, T. Sakaino, Elastic moduli and refractive indices of aluminosilicate glasses containing Y2O3, La2O3, and TiO2. J. Am. Ceram. Soc. 61, 247–249 (1978)

    Google Scholar 

  40. A. Makishima, J.D. Mackenzie, Direct calculation of young’s modulus of glass. J. Non-Cryst. Solids 12, 35–45 (1973)

    ADS  Google Scholar 

  41. E.A. Mahdy, Z.Y. Khattari, W.M. Salem, S. Ibrahim, Study the structural, physical, and optical properties of CaO–MgO–SiO2–CaF2 bioactive glasses with Na2O and P2O5 opants. Mater. Chem. Phys. 286, 126231 (2022)

    Google Scholar 

  42. Y.S. Rammah, K.A. Mahmoud, M.I. Sayyed, F.I. El-Agawany, R. El-Mallawany, Novel vanadyl lead-phosphate glasses: P2O5–PbO–ZnOeNa2O–V2O5: synthesis, optical, physical and gamma photon attenuation properties. J. Non-Cryst. Solids 534, 119944 (2020)

    Google Scholar 

  43. E. Kavaz, H.O. Tekin, G. Kilicc, G. Susoy, Newly developed zinc-tellurite glass system: an experimental investigation on impact of Ta2O5 on nuclear radiation shielding ability. J. Non-Cryst. Solids 544, 120169 (2020)

    Google Scholar 

  44. Y.B. Saddeek, S.A.M. Issa, T. Alharbi, K. Aly, M. Ahmad, H.O. Tekin, Mechanical and nuclear shielding properties of sodium cadmium borate glasses: Impact of cadmium oxide additive. Ceram. Int. 46, 2661–2669 (2020)

    Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Princess Nourah bint Abdulrahman, University Researchers Supporting Project (Grant No. PNURSP2022R60), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

All authors contribute in conceptualization, methodology, software, validation, investigation, data curation, writing—review and editing, visualization, supervision.

Corresponding author

Correspondence to Y. S. Rammah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Authors declare that this manuscript is original, has not been published before, and is not currently being considered for publication elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsaif, N.A.M., Khattari, Z.Y., Abouhaswa, A.S. et al. Linear/nonlinear optical, elastic-mechanical properties, and radiation buildup factors of boro-bariofluoride glasses. Appl. Phys. A 128, 1014 (2022). https://doi.org/10.1007/s00339-022-06157-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06157-w

Keywords

Navigation