Skip to main content
Log in

Effects of Er3+ dopant on polymorphic phase boundaries and electrical properties of Sn4+modified Ba1−yErySn0.06Ti0.94O3 multifunctional ceramics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Ferroelectric ceramic compositions of Ba1−yErySn0.06Ti0.94O3 (0 ≤ y ≤ 0.9 mol%) modified with varying erbium content prepared by solid-state reaction method have been investigated for their structural, electrical, and light upconversion properties. Erbium (Er) dopant reveals a distinct change in the dielectric phase transitions and exhibit multifunctional properties. The coexistence of orthorhombic and tetragonal phases is identified using Rietveld refinement. Increasing Er content increases the tetragonal phase fraction, reduces the tetragonal distortion and inhibits the grain growth. Raman spectroscopy reveals preferential substitution of Er3+ for Ba2+ and shows additional modes at ~ 335, ~ 442, ~ 621, ~ 669, and ~ 786 cm−1. Rhombohedral-to-orthorhombic-to-tetragonal phase transitions (TR–O and TO–T) shift to lower temperatures, and the tetragonal-to-cubic phase transition (TT–C) remains unchanged as evidenced through dielectric and reversible heat capacity measurements. Increasing Er content widens the transition zone width (TT–C − TO–T = ΔTPTTR) from ~ 39 to 60 °C and extends the useful application range. Increasing Er content decreases DC resistivity (ρdc) from ~ 9.54 to 4.21 × 1011 Ω-cm, decreases remnant polarization from 2.64 to 1.85 µC cm−2, and a maximum piezoelectric coefficient ~ 179 pC N−1 is observed for y = 0.3 mol%. The sensitivity of temperature dependent light upconversion reaches its maximum value of 0.00344 K−1 at ~ 450 K for y = 0.5 mol%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. W. Liu, J. Wang, X. Ke, S. Li, J. Alloy. Compd. 30, 1397–1400 (2004)

    Google Scholar 

  2. Y. Yao, C. Zhao, D. Lv, D. Wang, H. Wu, Y. Yang, X. Ren, J. Epl. 98, 27008 (2012)

    ADS  Google Scholar 

  3. A.K. Kalyani, H.K. Krishnan, A. Sen, A. Senyshyn, R. Ranjan, Phys. Rev. B 91, 024101 (2015)

    ADS  Google Scholar 

  4. L. Xu, Z. Wang, B. Su, C. Wang, X. Yang, R. Su, X. Long, C. He, Crystals 10, 434 (2020)

    Google Scholar 

  5. A.K. Kalyani, A. Senyshyn, R. Ranjan, J. Appl. Phys. 114, 014102 (2013)

    ADS  Google Scholar 

  6. X. Zhang, L. Wu, S. Gao, J.Q. Liu, B. Xu, Y.D. Xia, J. Yin, Z.G. Liu, AIP Adv. 5, 047134 (2015)

    ADS  Google Scholar 

  7. A. Movchikova, O. Malyshkina, G. Suchaneck, G. Gerlach, R. Steinhausen, H.T. Langhammer, C. Pientschke, H. Beige, J. Electroceram. 20, 43–46 (2008)

    Google Scholar 

  8. W. Li, Z. Xu, R. Chu, Z. Wu, J. Hao, P. Fu, J. Du, Z. Yue, RSC Adv. 5, 91903 (2015)

    ADS  Google Scholar 

  9. X. Wang, C.N. Xu, H. Yamada, K. Nishikubo, X.G. Zheng, Adv. Mater. 17, 1254–1258 (2005)

    Google Scholar 

  10. M.K. Mahata, T. Koppe, K. Kumar, H. Hofsass, U. Vetter, Sci. Rep. 10, 8775 (2020)

    ADS  Google Scholar 

  11. R. Bokolia, M. Mondal, V.K. Rai, K. Sreenivas, J. Appl. Phys. 121, 084101 (2017)

    ADS  Google Scholar 

  12. E. Antonelli, M. Letonturier, J.-C. M’ Peko, A.C. Hernandes, J. Eur. Ceram. Soc. 29, 1449–1455 (2009)

    Google Scholar 

  13. L. Shao, L. Sheng, F. Wen, Z. Ying, H. Huang, P. Zheng, W. Wu, Ceram. Int. 44, 99159922 (2018)

    Google Scholar 

  14. P. Du, L. Luo, W. Li, Y. Zhang, H. Chen, Mater. Sci. Eng. B 178, 1219–1223 (2013)

    Google Scholar 

  15. F.A. Ismail, R.A.M. Osman, M.S. Idris, A.Z. Jamal, EPJ Conf. 162, 01051 (2017)

    Google Scholar 

  16. W. Li, Z. Xu, R. Chu, P. Fu, G. Zang, J. Alloy. Compd. 583, 305–308 (2014)

    Google Scholar 

  17. D. Peng, H. Zou, C. Xu, X. Wang, X. Yao, J. Lin, T. Sun, AIP Adv. 2, 042187 (2012)

    ADS  Google Scholar 

  18. X. Wu, K.W. Kwok, J. Am. Ceram. Soc. 97, 1504–1510 (2014)

    Google Scholar 

  19. D. Peng, X. Wang, C. Xu, X. Yao, J. Lin, T. Sun, J. Am. Ceram. Soc. 96, 184–190 (2013)

    Google Scholar 

  20. T. Wei, Z. Dong, C.Z. Zhao, Y.J. Ma, T.B. Zhang, Y.F. Xie, Q.J. Zhou, Z.P. Li, Cerm. Int. 42, 5537–5545 (2016)

    Google Scholar 

  21. Y. Zhao, Y. Ge, X. Zhang, Y. Zhao, H. Zhou, J. Li, H. Jin, J. Alloy. Compd. 683, 171–177 (2016)

    Google Scholar 

  22. X.N. Zhu, W. Zang, X.M. Chen, AIP Adv. 3, 082125 (2013)

    ADS  Google Scholar 

  23. P.V. Balachandran, D. Xue, T. Lookman, Phys. Rev. B 93, 144111 (2016)

    ADS  Google Scholar 

  24. Y. Yu, H. Zou, Q.F. Cao, X.S. Wang, Y.X. Li, X. Yao, Ferroelectric 487, 77–85 (2015)

    ADS  Google Scholar 

  25. R. Kumar, I. Singh, R. Meena, K. Asokan, B. Birajdal, S. Patnaik, Mat. Res. Bull. 123, 110694 (2020)

    Google Scholar 

  26. V. Mueller, H. Beige, H.-P. Arbicht, C. Eisenschmidt, J. Mater. Res. 19, 2834 (2004)

    ADS  Google Scholar 

  27. C. Liu, Q. Wang, X. Wu, B. Sa, H. Sun, L. Luo, C. Lin, X. Zheng, T. Lin, Z. Sun, ACS Omega 4, 11004–11013 (2019)

    Google Scholar 

  28. M.A. Ansari, K. Sreenivas, Ceram. Int. 45, 20738–20749 (2019)

    Google Scholar 

  29. V.V. Mitic, Z.S. Nikolic, V.B. Paunaic, M. Milijkovic, B. Jordovic, L. Zivkovic, J. Am. Ceram. Soc. 93, 132–137 (2010)

    Google Scholar 

  30. R. Mahani, O. El-sayed, S.K. El-Mahy, I.K. Battisha, Acta Phys. Polo. A 137, 410–415 (2020)

    ADS  Google Scholar 

  31. Y.K. Kshetri, T. Kamiyama, S. Torii, S.H. Jeong, T.H. Kim, H. Choi, J. Zhou, Y.P. Feng, S.W. Lee, Sci. Rep. 10, 4952 (2020)

    ADS  Google Scholar 

  32. F. Sun, R. Wang, C. Aku-leh, H.X. Yang, R. He, J. Zhao, Sci. Rep. 4, 6429 (2014)

    ADS  Google Scholar 

  33. G. Philippot, M. Albino, R. Epherre, G. Chevallier, Y. Beynet, C. Maniere, A. Weibel, A. Peigney, M. Deluca, C. Elissalde, M. Maglione, C. Aymonier, C. Estourners, Adv. Electron. Mater. 1, 1500190–1500198 (2015)

    Google Scholar 

  34. A. Wei, L.T. Hui, W.C. Hui, D.C. Ling, L.N. Neng, L. Yong, Q.Z. Ming, S. Tao, W.Y. Yin, J. Huan, T.G. Shan, J.X. Ping, Acta Phys. Chim. Sin. 31, 1059–1068 (2015)

    Google Scholar 

  35. C.H. Perry, D.B. Hall, Phys. Rev. Lett. 15, 700–702 (1965)

    ADS  Google Scholar 

  36. V.V. Lemanov, Phys Colid State 39, 318–322 (1997)

    ADS  Google Scholar 

  37. A.S. Deepa, S. Vidya, P.C. Manu, S. Solomon, A. John, J.K. Thomas, J. Alloys Compd. 509, 1830–1835 (2011)

    Google Scholar 

  38. J.D. Freire, R.S. Katiyar, Phys. Rev. 37, 2074–2085 (1988)

    ADS  Google Scholar 

  39. Y. Leyet, R. Pena, Y. Zulueta, F. Guerrero, J.A. Rivera, Y. Romagura, J. Perez de la Cruz, Mat. Sci. Eng. B 177, 832–837 (2012)

    Google Scholar 

  40. L. Zhang, M. Zhang, L. Wang, C. Zhang, Z. Zhang, Y. Yao, L. Zhang, D. Xue, X. Lou, X. Ren, Appl. Phys. Lett. 105(16), 2908 (2014)

    ADS  Google Scholar 

  41. F. Auzel, Chem. Rev. 104, 139–173 (2004)

    Google Scholar 

  42. D. Peng, L. Laihui, L. Weiping, Y. Qingying, C. Hongbing, Appl. Phys. Lett. 104, 152902 (2014)

    Google Scholar 

Download references

Acknowledgements

One of the authors (Mohd Azaj Ansari) is thankful to University Grants Commission (UGC), India, for providing financial assistant vide letter No. Ref: FOS-1/114/PhD/4805, and Roll No 512429, for the Junior Research Fellowship (JRF:2015-2017) and Senior Research Fellowship (SRF:2017-2020). The authors wish to thank University of Delhi for the central instrument facility at the University Science Instrument Centre (USIC) and Guru Jambheshwar University of Science and Technology, Hisar (Haryana) for using the Novo-Control impedance analyzer under DST (FIST) sponsored programme for the measurement of dielectric properties.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohd Azaj Ansari or K. Sreenivas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, M.A., James, A.R., Zimik, K. et al. Effects of Er3+ dopant on polymorphic phase boundaries and electrical properties of Sn4+modified Ba1−yErySn0.06Ti0.94O3 multifunctional ceramics. Appl. Phys. A 128, 1000 (2022). https://doi.org/10.1007/s00339-022-06147-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06147-y

Keywords

Navigation