Skip to main content
Log in

Mixing of laser-induced plumes colliding in a background gas

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We collided silicon and germanium laser-induced plumes in helium background gas to clarify the behavior of the plumes after the collision. The expansion of the silicon and germanium species in the mixed plume after the collision was observed separately by spectroscopic measurements and the degree of mixing was evaluated by the experimental results. When the pressure of the background gas was 2000 Pa, the plumes moved backward after the collision with the counter-propagating shock wave, and no mixing of the plumes was observed. The effect of the counter-propagating shock wave was discussed by comparing with the results of numerical calculations based on the compressible Euler equations. At 300 Pa, the plumes concentrated at about 1 mm around the central region just after the collision and almost 100% mixing occurred in this region. The concentration and mixing of the plumes in the central region is a key to forming well-mixed plume. Stagnation and partial mixing of the plumes were observed at intermediate pressures. By decreasing the background helium gas pressure from 2000 to 300 Pa, the degree of mixing increased from 0 to about 100%. The results are compared with those in argon background gas to discuss effects of mean free path. The effects of counter-propagating shock wave, mean free path and the onset time of the collision on the backward movement and mixing of the plumes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. D.B. Chrisey, G.K. Hubler, Pulsed laser deposition of thin films (Wiley, New York, 1994)

    Google Scholar 

  2. D. Bäuerle, Laser processing and chemistry (Springer, Berlin, 2000)

    Book  Google Scholar 

  3. B.A. Remington, R.P. Drake, H. Takabe, D. Arnett, Phys. Plasmas 7, 1641 (2000)

    Article  Google Scholar 

  4. K.F. Al-Shboul, S.S. Harilal, S.M. Hassan, A. Hassanein, J.T. Costello, T. Yabuuchi, K.A. Tanaka, Y. Hirooka, Phys. Plasmas 21, 013502 (2014)

    Article  Google Scholar 

  5. Y. Yamada, T. Orii, I. Umezu, S.T.S. Takeyama, T.Y.T. Yoshida, Jpn. J. Appl. Phys. 35, 1361 (1996)

    Article  Google Scholar 

  6. D.B. Geohegan, A.A. Puretzky, G. Duscher, S.J. Pennycook, Appl. Phys. Lett. 72, 2987 (1998)

    Article  Google Scholar 

  7. P.W. Rambo, J. Denavit, Phys. Plasmas 1, 4050 (1994)

    Article  Google Scholar 

  8. J. Dardis, J.T. Costello, Spectrochim. Acta Part B 65, 627 (2010)

    Article  Google Scholar 

  9. S.L. Gupta, P.K. Pandey, R.K. Thareja, Phys. Plasmas 20, 013511 (2013)

    Article  Google Scholar 

  10. Z. Yang, W. Wei, J. Han, J. Wu, X. Li, S. Jia, Phys. Plasmas 22, 073511 (2015)

    Article  Google Scholar 

  11. N. Gambino, P. Hayden, D. Mascali, J. Costello, C. Fallon, P. Hough, P. Yeates, A. Anzalone, F. Musumeci, Appl. Surf. Sci. 272, 69 (2013)

    Article  Google Scholar 

  12. H. Luna, K.D. Kavanagh, J.T. Costello, J. Appl. Phys. 101, 033302 (2007)

    Article  Google Scholar 

  13. P. Hough, C. McLoughlin, S.S. Harilal, J.P. Mosnier, J.T. Costello, J. Appl. Phys. 107, 024904 (2010)

    Article  Google Scholar 

  14. A. Higo, K. Katayama, H. Fukuoka, T. Yoshida, T. Aoki, M. Yaga, I. Umezu, Appl. Phys. A 126, 304 (2020)

    Article  Google Scholar 

  15. K. Katayama, Y. Horai, H. Fukuoka, T. Kinoshita, T. Yoshida, T. Aoki, I. Umezu, Appl. Phys. A 124, 150 (2018)

    Article  Google Scholar 

  16. Y.B. Zel’Dovich, Y.P. Raizer, Physics of shock waves and high-temperature hydrodynamic phenomena (Academic Press, Cambridge, 1966)

    Google Scholar 

  17. N. Arnold, J. Gruber, J. Heitz, Appl. Phys. A 69, S87 (1999)

    Article  Google Scholar 

  18. S.S. Harilal, G.V. Miloshevsky, P.K. Diwakar, N.L. LaHaye, A. Hassanein, Phys. Plasmas 19, 083504 (2012)

    Article  Google Scholar 

  19. D.B. Geohegan, Appl. Phys. Lett. 60, 2732 (1992)

    Article  Google Scholar 

  20. R.A. Smith, J. Lazarus, M. Hohenberger, A. Marocchino, J.S. Robinson, J.P. Chittenden, A.S. Moore, E.T. Gumbrell, M. Dunne, Plasma Phys. Control. Fusion 49, B117 (2007)

    Article  Google Scholar 

  21. T. Kinoshita, H. Fukuoka, I. Umezu, Mater. Sci. Forum 910, 96 (2018)

    Article  Google Scholar 

  22. O.A. Ranjbar, Z. Lin, A.N. Volkov, Vacuum 157, 361 (2018)

    Article  Google Scholar 

  23. T.E. Itina, J. Hermann, P. Delaporte, M. Sentis, Phys. Rev. E 66, 066406 (2002)

    Article  Google Scholar 

  24. Z. Chen, D. Bleiner, A. Bogaerts, J. Appl. Phys. 99, 063304 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number JP 19K03815.

Funding

Japan Society for the Promotion of Science,KAKENHI Grant Number JP 19K03815,Ikurou Umezu

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ikurou Umezu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

See supplementary material for the animation movie of Fig. 2 (MP4 3328 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katayama, K., Kinoshita, T., Okada, R. et al. Mixing of laser-induced plumes colliding in a background gas. Appl. Phys. A 128, 1007 (2022). https://doi.org/10.1007/s00339-022-06136-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06136-1

Keywords

Navigation