Skip to main content
Log in

O Plasma Treatment Enhanced Room Temperature Ferromagnetism in MoS2

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

MoS2 is a typical two-dimensional material with promising optical and electrical properties. The realization of ferromagnetism in MoS2 is important for its applications in semiconductor spintronics. A facile technique should be developed to induce the ferromagnetism in MoS2, and the possible extrinsic contribution should be avoided. In this paper, flower-like MoS2 nanostructures were fabricated by the hydrothermal method. X-ray diffraction spectra show the 1 T/2H mixed phases of as-prepared MoS2 nanostructures, which changes to pure 2H structure after the O plasma treatment. Raman spectra confirm the existence of Mo–O bonding, which is further confirmed by the X-ray photoelectron spectra after the O plasma treatment. Magnetization measurements at 300 K show the weak ferromagnetism in the as-prepared MoS2, with saturated ferromagnetic magnetization of 0.0012 emu/g. After the O plasma treatment, the weak ferromagnetism is strongly enhanced with saturated ferromagnetic magnetization of 0.0343 emu/g. First principle calculation has been performed to disclose the possible origin of ferromagnetism. Significant overlapping between the density of states of O and Mo, or O and S has been observed. The magnetic contribution from Mo and S is negligible, while O takes the main role for the enhanced ferromagnetism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Schmidt, G., Ferrand, D., Molenkamp, L.W., Filip, A.T., van Wees, B.J.: Phys. Rev. B 62, R4790 (2000)

    Article  ADS  Google Scholar 

  2. Ohno, H.: Science 281, 951 (1998)

    Article  ADS  Google Scholar 

  3. Coey, J.M.D., Venkatesan, M., Fitzgerald, C.B.: Nat. Mater. 4, 173 (2005)

    Article  ADS  Google Scholar 

  4. Barla, A., Schmerber, G., Beaurepaire, E., Dinia, A., Bieber, H., Colis, S., Scheurer, F., Kappler, J.-P., Imperia, P., Nolting, F., Wilhelm, F., Rogalev, A., Müller, D., Grob, J.J.: Phys. Rev. B 76, 125201 (2007)

  5. Novoselov, K.S., Fal′ko, V.I., Colombo, L., Gellert, P.R., Schwab, M.G., Kim, K.: Nature 490, 192 (2012)

    Article  ADS  Google Scholar 

  6. Wang, Y., Ou, J.Z., Balendhran, S., Chrimes, A.F., Mortazavi, M., Yao, D.D., Field, M.R., Latham, K., Bansal, V., Friend, J.R., Zhuiykov, S., Medhekar, N.V., Strano, M.S., Kalantar-zadeh, K.: ACS Nano 7, 10083 (2013)

    Article  Google Scholar 

  7. Lin, J., Zhong, J., Zhong, S., Li, H., Zhang, H., Chen, W.: Appl. Phys. Lett. 103 (2013)

  8. Andriots, A.N., Menon, M.: Phys. Rev. B 90 (2014)

  9. Wang, J., Sun, F., Yang, S., Li, Y., Zhao, C., Xu, M., Zhang, Y., Zeng, H.: Appl. Phys. Lett. 109 (2016)

  10. Hu, A., Wang, L., Xiao, W., Xiao, G., Rong, Q.: Comp. Mater. Sci. 107, 72 (2015)

    Article  Google Scholar 

  11. Chen, N., Hu, C., Luo, X., Hong, A., Yu, T., Yuan, C.: Appl. Phys. Lett. 116, 073102 (2020)

  12. Wang, B., Zhang, D., Wang, H., Zhao, H., Liu, R., Li, Q., Zhou, S., Du, J., Xu, Q.: AIP Adv. 10, 015243 (2020)

  13. Saber, M.R., Khabiri, G., Maarouf, A.A., Ulbricht, M., Khalil, A.S.G.: RSC Adv. 8, 26364 (2018)

    Article  ADS  Google Scholar 

  14. Wu, M., Zhan, J., Wu, K., Li, Z., Wang, L., Geng, B., Wang, L., Pan, D.: J. Mater. Chem. A 5, 14061 (2017)

    Article  Google Scholar 

  15. Pradhan, G., Sharma, A.K.: Appl. Surf. Sci. 479, 1236 (2019)

    Article  ADS  Google Scholar 

  16. Chae, S., Chae, S.S., Choi, M., Park, H., Chang, H., Lee, J.: and T. Il Lee, Nano Energy 56, 65 (2019)

    Article  Google Scholar 

  17. Liu, Q., Li, X., He, Q., Khalil, A., Liu, D., Xiang, T., Wu, X., Song, L.: Small 11, 5556 (2015)

    Article  Google Scholar 

  18. Wang, X., Ding, W., Li, H., Li, H., Zhu, S., Zhu, X., Dai, J., Sheng, Z., Wang, H., Zhu, X., Sun, Y., Dou, S.X.: J. Mater. Chem. A 7, 19152 (2019)

    Article  Google Scholar 

  19. Zheng, Z., Cong, S., Gong, W., Xuan, J., Li, G., Lu, W., Geng, F., Zhao, Z.: Nat. Commun. 8, 1993 (2017)

  20. Jiao, J., Du, K., Wang, Y., Sun, P., Zhao, H., Tang, P., Fan, Q., Tian, H., Li, Q., Xu, Q.: Mater. Chem. Phys. 240, 122169 (2020)

  21. Li, B., Jiang, L., Li, X., Ran, P., Zuo, P., Wang, A., Qu, L., Zhao, Y., Chen g, Z., Lu, Y.: Sci. Rep. 7, 11182 (2017)

  22. Zhao, Q., Zhai, C., Lu, Q., Zhang, M.: Phys. Chem. Chem. Phys. 21, 232 (2019)

    Article  Google Scholar 

  23. Ding, X., Cui, X., Sohail, A., Murmu, P.P., Kennedy, J., Bao, N., Ding, J., Liu, R., Wang, L., Chu, X., Vinu, A., Ringer, S.P., Yi, J.: Adv. Quantum Technol. 4, 2000093 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Xie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, W., Li, R., Wang, B. et al. O Plasma Treatment Enhanced Room Temperature Ferromagnetism in MoS2. J Supercond Nov Magn 35, 501–506 (2022). https://doi.org/10.1007/s10948-021-06083-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-021-06083-7

Keywords

Navigation