Skip to main content
Log in

Microfabrication on low-refractive-index hydrogels using femtosecond laser direct writing

  • S.I. : COLA 2021/2022
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Polyacrylamide (PAA) hydrogels have applications as biochip materials due to their unique optical properties, including high transparency and low refractive indices similar to that of water, as well as their low cost. However, it is difficult to carry out microfabrication using these materials because they undergo nonuniform shrinkage when exposed to the air as water is lost via evaporation. The present study demonstrates the surface microfabrication of PAA hydrogels using a femtosecond laser under two different processing conditions. In some trials, the PAA hydrogel was swollen completely in water and then irradiated with the laser to fabricate a microgroove. In others, a dried hydrogel containing glycerol and having undergone uniform shrinkage was irradiated in air to fabricate the microgroove. Following the fabrication process, the dried gel was again swollen in water to reduce its refractive index. In both scenarios, microgrooves were fabricated by both single and multiple laser scanning. The results show that, for both processing conditions, single laser scanning generated narrow grooves with minimal depths as a consequence of the flexibility and swelling behavior of the hydrogel. In the case of multiple laser scanning, the shape of a microgroove having an aspect ratio of approximately 1.0 was retained on the surface of a PAA hydrogel with a refractive index of 1.34.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Nakajima, S. Ishihara, D. Imoto, S. Sawai, Nat. Commun. 5, 5367 (2014)

    Article  ADS  Google Scholar 

  2. J. Zhou, C. Tu, Y. Liang, B. Huang, Y. Fang, X. Liang, X. Ye, Analyst 145, 1706 (2020)

    Article  ADS  Google Scholar 

  3. Y.S. Torisawa, A. Takagi, Y. Nashimoto, T. Yasukawa, H. Shiku, T. Matsue, Biomaterials 28, 559 (2007)

    Article  Google Scholar 

  4. H.N. Kim, N. Choi, BioChip J. 13, 8 (2019)

    Article  Google Scholar 

  5. P. Gogoi, S. Sepehri, Y. Zhou, M.A. Gorin, C. Paolillo, E. Capoluongo, K. Gleason, A. Payne, B. Boniface, M. Cristofanilli, T.M. Morgan, P. Fortina, K.J. Pienta, K. Handique, Y. Wang, PLoS ONE 11, e0147400 (2016)

    Article  Google Scholar 

  6. D.H. Kim, C.H. Seo, K. Han, K.W. Kwon, A. Levchenko, K.Y. Suh, Adv. Funct. Mater. 19, 1579 (2009)

    Article  Google Scholar 

  7. M. Ghibaudo, L. Trichet, J. Le Digabel, A. Richert, P. Hersen, B. Ladoux, Biophys. J. 97, 357 (2009)

    Article  ADS  Google Scholar 

  8. J. Zhou, A.V. Ellis, N.H. Voelcker, Electrophoresis 31, 2 (2010)

    Article  Google Scholar 

  9. T. Fujii, Microelectron. Eng. 61–62, 907 (2002)

    Article  Google Scholar 

  10. M.S. Giridhar, K. Seong, A. Schulzgen, P. Khulbe, N. Peyghambarian, M. Mansuripur, Appl. Opt. 43, 4584 (2004)

    Article  ADS  Google Scholar 

  11. Y. Hanada, K. Sugioka, H. Kawano, T. Tsuchimoto, I. Miyamoto, A. Miyawaki, K. Midorikawa, Appl. Surf. Sci. 255, 9885 (2009)

    Article  ADS  Google Scholar 

  12. Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, K. Midorikawa, Lab Chip 12, 746 (2012)

    Article  Google Scholar 

  13. Y. Hanada, K. Sugioka, H. Kawano, I.S. Ishikawa, A. Miyawaki, K. Midorikawa, Biomed. Microdevices 10, 403 (2008)

    Article  Google Scholar 

  14. G.-L. Roth, C. Esen, R. Hellmann, Opt. Exp. 25, 18442 (2017)

    Article  Google Scholar 

  15. S. Ho, P.R. Herman, J.S. Aitchison, Appl. Phys. A 106, 5 (2012)

    Article  ADS  Google Scholar 

  16. Y. Hanada, T. Ogawa, K. Koike, K. Sugioka, Lab Chip 16, 2481 (2016)

    Article  Google Scholar 

  17. Y. Bai, B. Chen, F. Xiang, J. Zhou, H. Wang, Z. Suo, Appl. Phys. Lett. 105, 151903 (2014)

    Article  ADS  Google Scholar 

  18. M.L. Byron, E.A. Variano, Exp. Fluids 54, 1456 (2013)

    Article  Google Scholar 

  19. T. Matsumura, A. Kazama, T. Yagi, Appl. Phys. A 81, 1393 (2005)

    Article  ADS  Google Scholar 

  20. K.L. Choo, Y. Ogawa, G. Kanbargi, V. Otra, L.M. Raff, R. Komanduri, Mater. Sci. Eng. A 372, 145 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasutaka Hanada.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest relevant to the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagao, R., Yamada, S. & Hanada, Y. Microfabrication on low-refractive-index hydrogels using femtosecond laser direct writing. Appl. Phys. A 128, 761 (2022). https://doi.org/10.1007/s00339-022-05913-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05913-2

Keywords

Navigation