Skip to main content

Advertisement

Log in

Can magnetic β-NaYF4/g-C3N4 heterojunction with highly and stable NIR enhanced photocatalytic activity be synthesized by one-step solvothermal process

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

To overcome the intrinsic disadvantages of pristine g-C3N4 and make it reusable, improve the activity of g-C3N4 by making use of the near-infrared region, the magnetic Fe3O4/β-NaYF4/g-C3N4 (FO/UC/CN) heterogeneous materials with high and stable NIR enhanced photocatalytic activity were prepared via a new facile one-step solvothermal synthesis method. It can be revealed that FO/UC/CN can activate UV–visible light under excitation of 980 nm. Compared with pure Fe3O4, g-C3N4 and Fe3O4/g-C3N4, the obtained FO/UC/CN15 heterojunction exhibits good photodegradation rates of 65.56, 21.35, 59.22 and 20.49% for MB, MO, RhB and phenol, respectively. In addition, after four cycles of the photocatalytic degradation test, the photodegradation rates remain 62.14, 20.54, 57.64 and 19.36%, respectively. The results illustrate magnetic FO/UC/CN heterojunction exhibits highly NIR-enhanced photocatalytic activity and excellent stability. This study indicates a promising system to synthesize g-C3N4-based magnetic photocatalysis for effectively utilizing the NIR and treating industrial wastewater, which can be expected to alleviate the energy crisis and enhance the application of solar energy for dealing with environmental remediation in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Z. Zhao, J. Zuo, L. Fan, G. Zillante, Impacts of renewable energy regulations on the structure of power generation in China—a critical analysis. Renew. Energ. 36, 24–30 (2011)

    Google Scholar 

  2. X. Yan, K. Yuan, N. Lu, H. Xu, S. Zhang, N. Takeuchi, H. Kobayashi, R. Li, The interplay of sulfur doping and surface hydroxyl in band gap engineering: mesoporous sulfur-doped TiO2 coupled with magnetite as a recyclable, efficient, visible light active photocatalyst for water purification. Appl. Catal. B-Environ. 218, 20–31 (2017)

    Google Scholar 

  3. Y. Lv, L. Yue, I.M. Khan, Y. Zhou, W.B. Cao, S. Niazi, Z.P. Wang, Fabrication of magnetically recyclable yolk-shell Fe3O4@TiO2 nanosheet/Ag/g-C3N4 microspheres for enhanced photocatalytic degradation of organic pollutants. Nano Res. 14, 2363–2371 (2021)

    ADS  Google Scholar 

  4. X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76–80 (2009)

    ADS  Google Scholar 

  5. H.Y. Zhan, Y.T. Wang, X.Y. Mi, Z.R. Zhou, P.F. Wang, Q.X. Zhou, Effect of graphitic carbon nitride powders on adsorption removal of antibiotic resistance genes from water. Chinese Chem. Lett. 31, 2843–2848 (2020)

    Google Scholar 

  6. J. Mohanraj, D. Durgalakshmi, R. Saravanan, Water-soluble graphitic carbon nitride for clean environmental applications. Environ. Pollut. 269, 116172 (2020)

    Google Scholar 

  7. J. Zheng, L. Zhang, Designing 3D magnetic peony flower-like cobalt oxides/g-C3N4 dual Z-scheme photocatalyst for remarkably enhanced sunlight driven photocatalytic redox activity. Chem. Eng. J. 369, 947–956 (2019)

    Google Scholar 

  8. X. Zhang, X.R. Zhang, P. Yang, S.P. Jiang, Layered graphitic carbon nitride: nano-heterostructures, photo/electro-chemical performance and trends. J. Nanostruct. Chem. (2021). https://doi.org/10.1007/s40097-021-00442-5

    Article  Google Scholar 

  9. X.Y. Jiang, Z.Y. Zhang, M.H. Sun, W.Z. Liu, J.D. Huang, H.Y. Xu, Self-assembly of highly-dispersed phosphotungstic acid clusters onto graphitic carbon nitride nanosheets as fascinating molecular-scale Z-scheme heterojunctions for photocatalytic solar-to-fuels conversion. Appl. Catal. B-Environ. 281, 119473 (2020)

    Google Scholar 

  10. S. Sivasakthi, K. Gurunathan, Graphitic carbon nitride bedecked with CuO/ZnO hetero-interface microflower towards high photocatalytic performance. Renew. Energy 159, 786–800 (2020)

    Google Scholar 

  11. F. Yu, Y. Li, Z. Liu, D. Nan, B. Wang, L. He, J. Zhang, X. Tang, Y. Liu, Preparation and photocatalytic properties of ZnO nanorods/g-C3N4 composite. Appl. Phys. A-Mater. 127, 1–13 (2021)

    ADS  Google Scholar 

  12. Q. Zhang, X. Liu, M. Chaker, D. Ma, Advancing graphitic carbon nitride-based photocatalysts toward broadband solar energy harvesting. ACS Mater. Lett. 3, 663–697 (2021)

    Google Scholar 

  13. D.S. Wang, Removal of tetracycline, 2,4-dichlorophenol, and glyphosate from aqueous solution by novel humic acid-modified g-C3N4-supported hydrotalcite-like compounds: Kinetics, isotherm, thermodynamics, and reusability exploration. J. Chem. Eng. Data 65, 4914–4923 (2020)

    Google Scholar 

  14. S. Perera, D. Amarasinghe, K. Dissanayake, F. Rabuffetti, Average and local crystal structure of β-Er:Yb:NaYF4 upconverting nanocrystals probed by X-ray total scattering. Chem. Mater. 29, 6289–6297 (2017)

    Google Scholar 

  15. J. Xu, J. Huang, Z. Wang, Y. Zhu, Enhanced visible-light photocatalytic degradation and disinfection performance of oxidized nanoporous g-C3N4 via decoration with graphene oxide quantum dots. Chin. J. Catal. 41, 474–484 (2020)

    Google Scholar 

  16. S. Liang, M. He, J. Guo, J. Yue, X. Pu, B. Ge, W. Li, Fabrication and characterization of BiOBr:Yb3+, Er3+/g-C3N4 p-n junction photocatalysts with enhanced visible-NIR-light-driven photoactivities. Sep. Purif. Technol. 206, 69–79 (2018)

    Google Scholar 

  17. J. Fang, Y. Chen, W. Wang, L. Fang, C. Lu, C. Zhu, J. Kou, Y. Ni, Z. Xu, Highly efficient photocatalytic hydrogen generation of g-C3N4-CdS sheets based on plasmon-enhanced triplet triplet annihilation upconversion. Appl. Catal. B-Environ. 258, 117762 (2019)

    Google Scholar 

  18. J. Choi, W. Jo, FeWO4/g-C3N4 heterostructures decorated with N-doped graphene quantum dots prepared under various sonication conditions for efficient removal of noxious vapors. Ceram. Int. 46, 11346–11356 (2020)

    Google Scholar 

  19. E. Cheng, W. Yin, S. Bai, R. Qiao, Y. Zhong, Z. Li, Synthesis of vis/NIR-driven hybrid photocatalysts by electrostatic assembly of NaYF4: Yb, Tm nanocrystals on g-C3N4 nanosheets. Mater. Lett. 146, 87–90 (2015)

    Google Scholar 

  20. M. Huang, B. Yuan, L. Dai, M. Fu, Toward NIR driven photocatalyst: Fabrication, characterization, and photocatalytic activity of β-NaYF4:Yb3+, Tm3+/g-C3N4 nanocomposite. J. Colloid Interface Sci. 460, 264–272 (2015)

    ADS  Google Scholar 

  21. Y.X. Zhu, X.L. Zheng, W.W. Zhang, A. Kheradmand, S.S. Gu, M. Kobielusz, W. Macyk, H.T. Li, J. Huang, Y.J. Jiang, Near-infrared-triggered nitrogen fixation over upconversion nanoparticles assembled carbon nitride nanotubes with nitrogen vacancies. ACS Appl. Mater. Inter. 13, 32937–32947 (2021)

    Google Scholar 

  22. C. Yang, W. Zhao, X. Yu, H. Liu, J. Liu, R. Deun, Z. Liu, Facile synthesis and luminescence property of core shell structured NaYF4: Yb, Er/g-C3N4 nanocomposites. Mater. Res. Bull. 94, 415–422 (2017)

    Google Scholar 

  23. E. Cheng, S. Zhou, M. Li, Z. Li, Synthesis of g-C3N4-based NaYF4:Yb, Tm@TiO2 ternary composite with enhanced Vis/NIR-driven photocatalytic activities. Appl. Surf. Sci. 410, 383–392 (2017)

    ADS  Google Scholar 

  24. D. Xu, Z. Lian, M. Fu, B. Yuan, J. Shi, H. Cui, Advanced near-infrared-driven photocatalyst: fabrication, characterization, and photocatalytic performance of β-NaYF4:Yb3+, Tm3+@TiO2 core@shell microcrystals. Appl. Catal. B-Environ. 142–143, 377–386 (2013)

    Google Scholar 

  25. Z.X. Chen, M.L. Fu, X.D. Huang, B.L. Yuan, J.C. Yang, Magnetic infrared responsive photocatalyst: fabrication, characterization, and photocatalytic performance of β-NaYF4:Yb3+, Tm3+/TiO2/Fe3O4@SiO2 composite. Res. Chem. Intermed. 44, 6369–6385 (2018)

    Google Scholar 

  26. Z.X. Chen, M.L. Fu, Recyclable magnetic Fe3O4@SiO2 /β-NaYF4:Yb3+, Tm3+/ TiO2 composites with NIR enhanced photocatalytic activity. Mater. Res. Bull. 107, 194–203 (2018)

    Google Scholar 

  27. Y. Sun, Y. Chen, L. Tian, Y. Yu, X. Kong, J. Zhao, H. Zhang, Controlled synthesis and morphology dependent upconversion luminescence of NaYF4: Yb,Er nanocrystals. Nanotechnology 18, 447–447 (2007)

    Google Scholar 

  28. E.B. Chubenko, A.V. Baglov, Y.A. Fedotova, V.E. Borisenko, Synthesis of graphitic carbon nitride on the surface of Fe3O4 nanoparticles. Inorg. Mater. 57, 136–141 (2021)

    Google Scholar 

  29. Y.F. Jia, H.X. Ma, W.B. Zhang, G.Q. Zhu, W. Yang, N. Son, M. Kang, C.L. Liu, Z-scheme SnFe2O4-graphitic carbon nitride: Reusable, magnetic catalysts for enhanced photocatalytic CO2 reduction. Chem. Eng. J. 383, 123172 (2019)

    Google Scholar 

  30. F. Wang, Y. Han, C. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, X. Liu, Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 463, 1061–1065 (2010)

    ADS  Google Scholar 

  31. W. Wang, Y. Yu, T. An, G. Li, H. Yip, J. Yu, P. Wong, Visible-light-driven photocatalytic inactivation of E. coli K-12 by bismuth vanadate nanotubes: bactericidal performance and mechanism. Environ. Sci. Technol. 46, 4599–4606 (2012)

    ADS  Google Scholar 

  32. J. Qin, H. Zeng, Photocatalysts fabricated by depositing plasmonic Ag nanoparticles on carbon quantum dots/graphitic carbon nitride for broad spectrum photocatalytic hydrogen generation. Appl. Catal. B-Environ. 209, 161–173 (2017)

    Google Scholar 

  33. R. Balaji, S. Kumar, K. Reddy, V. Sharma, K. Bhattacharyya, V. Krishnan, Near-infrared driven photocatalytic performance of lanthanide-doped NaYF4@CdS core-shell nanostructures with enhanced upconversion properties. J. Alloys Compd. 724, 481–491 (2017)

    Google Scholar 

  34. J. Cai, X. Wu, S. Li, F. Zheng, L. Zhu, Z. Lai, Synergistic effect of double-shelled and sandwiched TiO2@Au@C hollow spheres with enhanced visible-light-driven photocatalytic activity. ACS Appl. Mater. Interfaces. 7, 3764–3772 (2015)

    Google Scholar 

  35. X. Zhang, Y. Yang, W. Huang, Y. Yang, Y. Wang, C. He, N. Liu, M. Wu, L. Tang, g-C3N4/UiO-66 nanohybrids with enhanced photocatalytic activities for the oxidation of dye under visible light irradiation. Mater. Res. Bull. 99, 349–358 (2018)

    Google Scholar 

  36. Y. Lv, L. Yue, Q. Li, B. Shao, S. Zhao, H. Wang, S. Wu, Z. Wang, Recyclable (Fe3O4-NaYF4:Yb, Tm)@TiO2 nanocomposites with near-infrared enhanced photocatalytic activity. Dalton Trans. 47, 1666–1673 (2018)

    Google Scholar 

  37. Z. Li, F. Shi, T. Zhang, H. Wu, L. Sun, C. Yan, Ytterbium stabilized ordered mesoporous titania for near-infrared photocatalysis. Chem. Commun. 47, 8109–8111 (2011)

    Google Scholar 

  38. Y. Tang, W. Di, X. Zhai, R. Yang, W. Qin, NIR-responsive photocatalytic activity and mechanism of NaYF4:Yb, Tm@TiO2 core–shell nanoparticles. ACS Catal. 3, 405–412 (2013)

    Google Scholar 

  39. D. Yu, T. Yu, A. Bunningen, Q. Zhang, A. Meijerink, F. Rabouw, Understanding and tuning blue-to-near-infrared photon cutting by the Tm3+/Yb3+ couple. Light: Sci Appl. 9, 10701–10709 (2020)

    Google Scholar 

  40. J. Zhao, G. Pan, W. Xu, S. Jin, H. Zhang, H. Gao, M. Kang, Y. Mao, Strong upconverting and downshifting emission of Mn2+ ions in a Yb,Tm:NaYF4@NaLuF4/Mn:CsPbCl3 core/shell heterostructure towards dual-model anti-counterfeiting. Chem. Commun. 56, 14609–14612 (2020)

    Google Scholar 

  41. Z. Gerelkhuu, B. Huy, D. Jung, M. Sharipov, Y. Lee, Selective optosensing of iron (III) ions in HeLa cells using NaYF4:Yb3+/Tm3+ upconversion nanoparticles coated with polyepinephrine. Anal. Bioana. L. Chem. 413(1363), 1371 (2021)

    Google Scholar 

  42. P. Zhang, H. Chen, Y. Yang, D. Zhao, Z. Jia, K. Zheng, G. Qin, W. Qin, 3D up-conversion display of NaYF4-PMMA covalent-linking nanocomposites. J. Alloys Compd. 753, 725–730 (2018)

    Google Scholar 

  43. H. Jia, D. Li, D. Zhang, Y. Dong, S. Ma, M. Zhou, W. Di, W. Qin, High color-purity red, green, and blue-emissive core–shell upconversion nanoparticles using ternary near-infrared quadrature excitations. ACS Appl. Mater. Inter. 13, 4402–4409 (2021)

    Google Scholar 

  44. S. Liu, J. Huang, L. Yan, N. Song, P. Zhang, J. He, B. Zhou, Multiphoton ultraviolet upconversion through selectively controllable energy transfer in confined sensitizing sublattices towards improved solar photocatalysis. J. Mater. Chem. A 9, 4007–4017 (2021)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Science Foundation of China (41771272, 51778598), Natural Science Foundation of Fujian Province (2022J01132905, 2015J01644, 2017J01590, 2017J01710, 2018J01510), Scientific Research Projects of Fujian Middle-aged and Young Teacher Education Research Project (JAT200521, JAT200537), Program for New Century Excellent Talents in Fujian Province University, Key Laboratory of Ecological Environment and Information Atlas in Fujian Provincial University (ST18003), Fujian Provincial Key Laboratory of ecotoxicological effects and Control of New pollutants (PY19001), Projects of Putian University (2015060, 2016015, 2016065, 2016035, 2017071), National College Students' Innovation and Entrepreneurship Training Program Project (202011498004, 202011498007). Moreover, we thank Hongyun Ren (Institute of Urban Environment (IUE), Chinese Academy of Sciences (CAS), China) for the SEM investigations.

Funding

National Science Foundation of China, 41771272, Zhangxu Chen, 51778598, Zhangxu Chen, Natural Science Foundation of Fujian Province, 2015J01644 and 2022J01132905, Zhangxu Chen, 2017J01590, Zhangxu Chen, 2017J01710, Zhangxu Chen, 2018J01510, Zhangxu Chen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhangxu Chen.

Ethics declarations

Conflict of interest

All other authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1778 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Zhu, D. & Zhang, L. Can magnetic β-NaYF4/g-C3N4 heterojunction with highly and stable NIR enhanced photocatalytic activity be synthesized by one-step solvothermal process. Appl. Phys. A 128, 668 (2022). https://doi.org/10.1007/s00339-022-05814-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05814-4

Keywords

Navigation