Skip to main content
Log in

Crystal structure, magnetic and dielectric properties of Er-doped BiFeO3 ceramics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Er-doped BiFeO3 (BFO) ceramics have been synthesized to investigate their improved physical properties. The analysis of XRD patterns by Rietveld refinement revealed transformation in crystal structure from rhombohedral (x < 0.10, R3c) to mixed rhombohedral and orthorhombic (0.10 ≤ x ≤ 0.20, R3c + Pnma) phases. Electron density contours confirm the stabilization of the uniform and symmetric structures in the calculated profiles. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to examine the morphology of prepared ceramics. The presence of selective elements in prepared samples was confirmed by EDAX (Energy-dispersive analysis of X-ray). M-H loops depict significant enhancement in magnetic properties with doping of Er, which is suggested to be evolved via suppression of spin cycloid and reorientation of magnetic spins. The highest values of coercive field and remnant magnetization were observed for x = 0.20 (Hc = 0.35565 T, Mr = 0.39774 emu/g). Dielectric measurements of all the ceramics, recorded in the frequency range from 100 Hz to 7MHz follow Maxwell–Wagner type dispersive behaviour. The Nyquist plot characteristics of the prepared Er doped BFO ceramics revealed non-Debye relaxation processes with negative (− ve) temperature coefficient of resistance (NCTR). All the prepared ceramics show polarization hysteresis loops (P-E). The obtained results show that these ceramics may be considered for designing novel smart systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M. Fiebig, T. Lottermoser, D. Meier, M. Trassin, Nat. Rev. Mater. 1, 16046 (2016)

    Article  ADS  Google Scholar 

  2. M. Rangi, S. Sanghi, S. Jangra, K. Kaswan, S. Khasa, A. Agarwal, Ceram. Int. 43, 12095–12101 (2017)

    Article  Google Scholar 

  3. S. Pattanayak, R.N.P. Choudhary, P.R. Das, S.R. Shannigrahi, Ceram. Int. 40, 7983–7991 (2014)

    Article  Google Scholar 

  4. B. Dhanalakshmi, B.C. Sekhar, K.V. Vivekananda, B.S. Rao, B.P. Rao, P.S.V. Subba Rao, Appl. Phys. A. 126, 557 (2020)

    Article  ADS  Google Scholar 

  5. A. Sundaresan, N.V. Ter-Oganessian, J. Appl. Phys. 129, 060901 (2021)

    Article  ADS  Google Scholar 

  6. F. Zhang, X. Zeng, D. Bi, K. Guo, Y. Yao, S. Lu, Materials 11, 2208 (2018)

    Article  ADS  Google Scholar 

  7. J.S. Hwang, J.Y. Cho, S.Y. Park, Y.J. Yoo, P.S. Yoo, B.W. Lee, Y.P. Lee, Appl. Phys. Lett. 106, 062902 (2015)

    Article  ADS  Google Scholar 

  8. M. Yadav, A. Agarwal, S. Sanghi, R.K. Kotnala, J. Shah, T. Bhasin, M. Tuteja, J. Singh, J. Alloy. Compd. 750, 848–856 (2018)

    Article  Google Scholar 

  9. J. Singh, A. Agarwal, S. Sanghi, P. Prakash, A. Das, C.L. Prajapat, M. Rangi, AIP Adv. 9, 025110 (2019)

    Article  ADS  Google Scholar 

  10. H. Schmidt, Ferroelectrics 162, 317 (1994)

    Article  Google Scholar 

  11. P. Ravindran, R. Vidya, A. Kjekshus, H. Fjellvåg, Phys. Rev. B 74, 224412 (2006)

    Article  ADS  Google Scholar 

  12. P. Uniyal, K.L. Yadav, J. Alloy. Compd. 511, 149 (2012)

    Article  Google Scholar 

  13. F. Xue, Q. Fu, D. Zhou, Y. Tian, Y. Hu, Z. Zheng, L. Zhou, Ceram. Int. 41, 14718 (2015)

    Article  Google Scholar 

  14. Y. Wang, C. Nan, J. Appl. Phys. 103, 024103 (2008)

    Article  ADS  Google Scholar 

  15. P. Pandit, S. Satapathy, P. Sharma, P.K. Gupta, S.M. Yusuf, V.G. Sathe, Bull. Mater. Sci. 34(4), 899–905 (2011)

    Article  Google Scholar 

  16. Y.P. Wang, L. Zhou, M.F. Zhang, X.Y. Chen, J.-M. Liu, Z.G. Liu, Appl. Phys. Lett. 84, 1731 (2004)

    Article  ADS  Google Scholar 

  17. T. Rojac, A. Bencan, B. Malic, G. Tutuncu, J.L. Jones, J.E. Daniels, Damjanovic. J. Am. Ceram. Soc. 97, 1993–2011 (2014)

    Article  Google Scholar 

  18. M.I. Morozov, N.A. Lomanova, V.V. Gusarov, Russ. J. Gen. Chem. 73, 1676–1680 (2003)

    Article  Google Scholar 

  19. V.A. Khomchenko, D.A. Kiselev, J.M. Vieira, L. Jian, A.L. Kholkin, A.M.L. Lopes, G. Pogorelov, J.P. Araujo, M. Maglione, J. Appl. Phys. 103, 024105 (2008)

    Article  ADS  Google Scholar 

  20. A. Reetu, S.S. Agarwal, N.A. Ashima, J. Appl. Phys. 45, 16500 (2012)

    Google Scholar 

  21. S. Jangra, S. Sanghi, A. Agarwal, S. Khasa, M. Rangi, Appl. Phys. A 127, 534 (2021)

    Article  ADS  Google Scholar 

  22. V.R. Reddy, D. Kothari, A. Gupta, S.M. Gupta, Appl. Phys. Lett. 94, 082505 (2009)

    Article  ADS  Google Scholar 

  23. N.V. Minh, N.G. Quan, J. Alloys. Compd. 509, 2663–2666 (2011)

    Article  Google Scholar 

  24. Y.J. Wu, X.K. Chen, J. Zhang, X.J. Chen, J. Magn. Magn. Mater. 324, 1348–1352 (2012)

    Article  ADS  Google Scholar 

  25. W. Wei, H. Xuan, L. Wang, Y. Zhang, K. Shen, D. Wang, T. Qiu, Q. Xu, Physica B 407, 2243–2246 (2012)

    Article  ADS  Google Scholar 

  26. J. Ray, A.K. Biswal, S. Acharya, V. Ganesan, D.K. Pradhan, P.N. Vishwakarma, J. Magn. Magn. Mater. 324, 4084–4089 (2012)

    Article  ADS  Google Scholar 

  27. P. Uniyal, K.L. Yadav, J. Appl. Phys. 105, 07D914 (2009)

    Article  Google Scholar 

  28. S.S. Chowdhury, A.H.M. Kamaal, R. Hossain, M. Hasan, Md.F. Islam, B. Ahmmad, M.A. Basith, Ceram. Int. 43, 9191–9199 (2017)

    Article  Google Scholar 

  29. J. Singh, A. Agarwal, S. Sanghi, P. Prakash, A. Das, C.L. Prajapat, M. Rangi, AIPAdvances 9, 025110 (2019)

    ADS  Google Scholar 

  30. O. Singh, A. Agarwal, A. Das, S. Sanghi, A. Jindal, J. Magn. Magn. Mater. 442, 200–207 (2017)

    Article  ADS  Google Scholar 

  31. O. Singh, A. Kumar, K. Kumar, A. Agarwal, S. Sanghi, J. Magn. Magn. Mater. 519, 167412 (2021)

    Article  Google Scholar 

  32. D.C. Arnold, IEEE transactions on ultrasonics, ferroelectrics, and frequency. Control 1, 62–82 (2015)

    Google Scholar 

  33. T. Durga Rao, T. Karthik, S. Asthana, J. Rare Earths 31(4), 370–375 (2013)

    Article  Google Scholar 

  34. S. Jangra, S. Sanghi, A. Agarwal, M. Rangi, K. Kaswan, Ceram. Int. 01, 194 (2018)

    Google Scholar 

  35. P. Godara, A. Agarwal, N. Ahlawat, S. Sanghi, J. Mol. Struct. 1097, 207–213 (2015)

    Article  ADS  Google Scholar 

  36. V.M. Goldschmidt, Die Gesetze der Krystallochemie. Naturwissenschaften 14, 477–485 (1926)

    Article  ADS  Google Scholar 

  37. R. Kumari, N. Ahlawat, A. Agarwal, S. Sanghi, M. Sindhu, J. Alloy. Compd. 695, 3282–3289 (2017)

    Article  Google Scholar 

  38. U. Shmueli, Theories and techniques of crystal structure determination (Oxford University Press, London, 2007)

    MATH  Google Scholar 

  39. D. Sands, Introduction to crystallography (Dover Publications, New York, 1993)

    Google Scholar 

  40. K. Sunil Kumar, M. Ramanadha, A. Sudharani, S. Ramu, R.P. Vijayalakshmi, J.Supercond. Novel Magn. 10948, 4789–2 (2018)

    Google Scholar 

  41. H. Feng Zhou, Z. Ling Hou, L. Bao Kong, H. Bo Jin, M. Sheng Cao, Xin Qi, Phys. Status. Solidi. A. 210(4), 809–813 (2013)

    Article  ADS  Google Scholar 

  42. P.S. Mazumder, D. Devi, P. Bhattacharya, A.S. Choudhury, Appl. Phys. Lett 91, 062510 (2007)

    Article  ADS  Google Scholar 

  43. J. Singh, A. Agarwal, S. Sanghi, T. Bhasin, M. Yadav, U. Bhakar, O. Singh, Curr. Appl. Phys. 12, 014 (2018)

    Google Scholar 

  44. A.J. Moulson, J.M. Herbert, Electro-ceramics: materials, properties, applications (John Wiley and Sons, USA, 2003)

    Book  Google Scholar 

  45. K.W. Wagner, Ann. Phys. 40, 818 (1993)

    Google Scholar 

  46. J.C. Maxwell, Electricity and magnetism, vol. 1 (Oxford University Press, UK, 1929), p. 328

    Google Scholar 

  47. P. Godara, A. Agarwal, N. Ahlawat, S. Sanghi, R. Dahiya, J. Alloysand. Compd. 594, 175–181 (2014)

    Article  Google Scholar 

  48. C.G. Koops, Phys. Rev. 83, 121 (1951)

    Article  ADS  Google Scholar 

  49. K.C. Kao, Dielectric phenomena in solids (Academic Press, Cambridge, 2004)

    Google Scholar 

  50. V.L. Mathe, R.B. Kamble, Mater. Res. Bull. 43, 2160–2165 (2008)

    Article  Google Scholar 

  51. A. Verma, O.P. Thakur, C. Prakash, T.C. Goel, R.C. Mendiratta, Mater. Sci. Eng., B 116, 1–6 (2005)

    Article  Google Scholar 

  52. C. Behera, R.N.P. Choudhary, P.R. Das, Mater. Res. Express. 5, 056301 (2018)

    Article  ADS  Google Scholar 

  53. K. Min, F. Huang, Y. Jin, X. Lu, H. Wu, J. Zhu, J. Phys. D Appl. Phys. 48, 445301 (2015)

    Article  ADS  Google Scholar 

  54. S.J. Clark, J. Robertson, Appl. Phys. Lett. 94, 022902 (2009)

    Article  ADS  Google Scholar 

  55. G.W. Pabst, L.W. Martin, Y.-H. Chu, R. Ramesh, Appl. Phys. Lett. 90, 072902 (2007)

    Article  ADS  Google Scholar 

  56. C. Ederer, N.A. Spaldin, Phys. Rev. B71, 224103 (2005)

    Article  ADS  Google Scholar 

  57. R. Kumar, I. Singh, R. Meena, K. Asokan, B. Birajdar, S. Patnaik, Mater. Res. Bull. 123, 110694 (2020)

    Article  Google Scholar 

  58. M. Sindhu, N. Ahlawat, S. Sanghi, R. Kumari, A. Agarwal, J. Appl. Phys. 114, 164106 (2013)

    Article  ADS  Google Scholar 

  59. S. Pattanayak, B.N. Parida, P.R. Das, R.N.P. Choudhary, Appl. Phys. A 112, 387–395 (2013)

    Article  ADS  Google Scholar 

  60. Y.P. Jiang, X.G. Tang, Q.X. Liu, D.G. Chen, C.B. Ma, J. Mater. Sci.: Mater. Electron. 25, 495–499 (2014)

    Google Scholar 

  61. Y. Ma, W. Xing, J. Chen, Y. Bai, S. Zhao, H. Zhang, Appl. Phys. A 122, 63 (2016)

    Article  ADS  Google Scholar 

  62. S. Sharma, J.M. Siqueiros, O.R. Herrera, J. Alloy. Compd. 853, 156979 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to DST, New Delhi for providing XRD facility under FIST scheme (Grant No. SR/FST/PSI-089/2005). One of the authors (Sonia Rani) is thankful to Haryana State Council for Science and Technology (HSCST), Panchkula for financial assistance. Authors thanks AIRF, Jawaharlal Nehru University, New Delhi, for access to the VSM facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujata Sanghi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, S., Sanghi, S., Agarwal, A. et al. Crystal structure, magnetic and dielectric properties of Er-doped BiFeO3 ceramics. Appl. Phys. A 128, 576 (2022). https://doi.org/10.1007/s00339-022-05711-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05711-w

Keywords

Navigation