Skip to main content
Log in

Design and investigation of split (\(n/n^-\)) buffer layer semi-superjunction IGBT

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, an asymmetric semi-superjunction (SJ) insulated gate bipolar transistor (IGBT) is proposed and investigated. The buffer layer of proposed device is split into two unequal segments with decreasing order of doping in x-direction. One segment is moderately doped, named \(B_{N}^{~(+)}\), while other is low doped known as \(B_{N}^{~(-)}\). Region \(B_{N}^{~(-)}\) offers maximum flow of carriers, resulting in increase of collector current density with similar breakdown voltage (BV). In off-state, excess electric field exists due to high voltage. This needs to be restricted which is achieved by \(B_{N}^{~(+)}\) region. In semi-SJ device drift resistance is reduced which gives a better performance in the off-state, leading to the lower turn-off loss. Outcomes of TCAD simulation result show a 50.6% reduction in on-state resistance without degrading the BV. Furthermore, 48.8% and 20.3% reduction in turn-off loss and forward voltage drop, respectively, are also observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B. J. Baliga, Fundamentals of power semiconductor devices. Springer Science & Business Media, (2010)

  2. V. Khanna, “The insulated gate bipolar transistor (igbt) theory and design 1st ed,” Canada: Institute of Electrical and Electronics Engineers, (2003)

  3. B.J. Baliga, M.S. Adler, R.P. Love, P.V. Gray, N.D. Zommer, The insulated gate transistor: a new three-terminal mos-controlled bipolar power device. IEEE Trans. Electron Devices 31(6), 821–828 (1984)

    Article  ADS  Google Scholar 

  4. T. Fujihira, Theory of semiconductor superjunction devices. Jpn. J. Appl. Phys. 36(10R), 6254 (1997)

    Article  ADS  Google Scholar 

  5. P. M. Shenoy, A. Bhalla, G. M. Dolny, “Analysis of the effect of charge imbalance on the static and dynamic characteristics of the super junction mosfet,” in 11th International Symposium on Power Semiconductor Devices and ICs. ISPSD’99 Proceedings (Cat. No. 99CH36312). IEEE, pp. 99–102 (1999)

  6. N. Gupta, A. Naugarhiya, “1.4 kv planar gate superjunction igbt with stepped doping profile in drift and collector region,” Silicon, pp. 1–10, (2020), https://doi.org/10.1007/s12633-020-00456-8

  7. M. Antoniou, N. Lophitis, F. Udrea, F. Bauer, U.R. Vemulapati, U. Badstuebner, On the investigation of the “anode side’’ superjunction igbt design concept. IEEE Electron Device Lett. 38(8), 1063–1066 (2017)

    Article  ADS  Google Scholar 

  8. N. Gupta, S. Singh, A. Naugarhiya, An insulated gate bipolar transistor with three-layer poly gate for improved figure of merit. J. Mater. Sci.: Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-04113-z

    Article  Google Scholar 

  9. H. Takahashi, Y. Ishimura, C. Yokoyama, H. Hagino, T. Yamada, “A high performance igbt with new n+ buffer structure,” in Proceedings of International Symposium on Power Semiconductor Devices and IC’s: ISPSD’95. IEEE, pp. 474–479 (1995)

  10. G. Deng, X. Luo, K. Zhou, Q. He, X. Ruan, Q. Liu, T. Sun, B. Zhang, A snapback-free rc-igbt with alternating n, p buffers, in, 29th International Symposium on Power Semiconductor Devices and IC’s (ISPSD). IEEE 2017, 127–130 (2017)

  11. M. Alam, D.T. Morisette, J.A. Cooper, Design guidelines for superjunction devices in the presence of charge imbalance. IEEE Trans. Electron Devices 65(8), 3345–3351 (2018)

    Article  ADS  Google Scholar 

  12. M. Antoniou, F. Udrea, F. Bauer, I. Nistor, The semi-superjunction igbt. IEEE Electron Device Lett. 31(6), 591–593 (2010)

    Article  ADS  Google Scholar 

  13. M. Antoniou, F. Udrea, F. Bauer, “The 3.3kv semi-superjunction igbt for increased cosmic ray induced breakdown immunity,” in 2009 21st International Symposium on Power Semiconductor Devices IC’s, pp. 168–171 (2009)

  14. F. Hu, L. Song, Z. Han, H. Du, J. Luo, “A new snapback-free base resistance controlled thyristor with semi-superjunction,” IEICE Electronics Express, vol. advpub, (2019)

  15. B. Li, X.C.J. Frank, Z. Li, X. Lin, A trench accumulation layer controlled insulated gate bipolar transistor with a semi-SJ structure. J. Semiconductors 34(12), 124001 (2013). https://doi.org/10.1088/1674-4926/34/12/124001

    Article  Google Scholar 

  16. I. Silvaco, “ATLAS users manual,” Santa Clara, CA, Ver, vol. 5, (2011)

  17. K. Nadda, M.J. Kumar, Vertical bipolar charge plasma transistor with buried metal layer. Sci. Rep. 5, 7860 (2015)

    Article  ADS  Google Scholar 

  18. F.D. Bauer, The super junction bipolar transistor: a new silicon power device concept for ultra low loss switching applications at medium to high voltages. Solid-State Electron. 48(5), 705–714 (2004)

    Article  ADS  Google Scholar 

  19. M. Sumitomo, H. Sakane, K. Arakawa, Y. Higuchi, M. Matsui, Injection control technique for high speed switching with a double gate pnm-igbt, in, 25th International Symposium on Power Semiconductor Devices & IC’s (ISPSD). IEEE 2013, 33–36 (2013)

  20. M. Sumitomo, J. Asai, H. Sakane, K. Arakawa, Y. Higuchi, M. Matsui, Low loss igbt with partially narrow mesa structure (pnm-igbt), in, 24th International Symposium on Power Semiconductor Devices and ICs. IEEE 2012, 17–20 (2012)

  21. S. Harada, M. Tsukuda, I. Omura, “Optimal double sided gate control of igbt for lower turn-off loss and surge voltage suppression,” in CIPS 2016; 9th International Conference on Integrated Power Electronics Systems. VDE, pp. 1–5 (2016)

  22. S. Huang, K. Sheng, F. Udrea, G. Amaratunga, A dynamic n-buffer insulated gate bipolar transistor. Solid-State Electron. 45(1), 173–182 (2001)

    Article  ADS  Google Scholar 

  23. N. Gupta, A. Naugarhiya, The design of a new heterogate superjunction insulated-gate bipolar transistor. J. Mater. Sci.: Mater. Electron. (2021). https://doi.org/10.1007/s10825-021-01662-2

    Article  Google Scholar 

  24. W. Chen, J. Cheng, H. Huang, B. Zhang, X.B. Chen, The oppositely doped islands igbt achieving ultralow turn off loss. IEEE Trans. Electron Devices 66(8), 3690–3693 (2019)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Namrata Gupta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, N., Roy, P. & Naugarhiya, A. Design and investigation of split (\(n/n^-\)) buffer layer semi-superjunction IGBT. Appl. Phys. A 128, 376 (2022). https://doi.org/10.1007/s00339-022-05497-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05497-x

Keywords

Navigation