Skip to main content

Advertisement

Log in

Phase transformation-induced strengthening and multistage strain hardening in double-gradient-structured high-entropy alloys

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The strengthening and strain hardening behaviors of a CoNiCrFeMn high-entropy alloy were investigated by molecular dynamics (MD) simulation. Two gradient structures, i.e., grain size and composition gradient, were introduced into the alloy, and the alloy is characterized by a high strain hardening rate of 13.84 GPa, the maximum one among reported Cantor-like alloys in MD simulation, within a multistage strain hardening behavior. Distinct phase transformations dependent on the variations of both grain size and stacking fault energy were proposed to play crucial roles in determining the strengthening and the unusual strain hardening behaviors, and the corresponding microstructural evolution at increased strain was provided and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3
Fig.4
Fig.5
Fig.6
Fig.7

Similar content being viewed by others

Data availability

The data forming the basis of this study are available from the authors upon reasonable request.

References

  1. W. Li, D. Xie, D. Li, Y. Zhang, Y. Gao, P.K. Liaw, Prog. Mater. Sci. 118, 100777 (2021). https://doi.org/10.1016/j.pmatsci.2021.100777

    Article  Google Scholar 

  2. Z. Li, S. Zhao, R.O. Ritchie, M.A. Meyers, Prog. Mater. Sci. 102, 296–345 (2019). https://doi.org/10.1016/j.pmatsci.2018.12.003

    Article  Google Scholar 

  3. E.P. George, W.A. Curtin, C.C. Tasan, Acta Mater. 188, 435–474 (2020). https://doi.org/10.1016/j.actamat.2019.12.015

    Article  ADS  Google Scholar 

  4. S.Z. Han, E.-A. Choi, S.H. Lim, S. Kim, J. Lee, Prog. Mater. Sci. 117, 100720 (2021). https://doi.org/10.1016/j.pmatsci.2020.100720

    Article  Google Scholar 

  5. R.O. Ritchie, Nat. Mater. 10(11), 817–822 (2011). https://doi.org/10.1038/nmat3115

    Article  ADS  Google Scholar 

  6. P. Shi, Y. Zhong, Y. Li, W. Ren, T. Zheng, Z. Shen, B. Yang, J. Peng, P. Hu, Y. Zhang, P.K. Liaw, Y. Zhu, Mater. Today 41, 62–71 (2020). https://doi.org/10.1016/j.mattod.2020.09.029

    Article  Google Scholar 

  7. X. Li, L. Lu, J. Li, X. Zhang, H. Gao, Nat. Rev. Mater. 5(9), 706–723 (2020). https://doi.org/10.1038/s41578-020-0212-2

    Article  ADS  Google Scholar 

  8. K. Lu, Nat. Rev. Mater. (2016). https://doi.org/10.1038/natrevmats.2016.19

    Article  ADS  Google Scholar 

  9. L. Guo, W.Q. Wu, S. Ni, Z. Yuan, Y. Cao, Z.W. Wang, M. Song, J. Alloys Compd. 841, 10 (2020). https://doi.org/10.1016/j.jallcom.2020.155688

    Article  Google Scholar 

  10. Z. Tong, H. Liu, J. Jiao, W. Zhou, Y. Yang, X. Ren, Addit. Manuf. 35, 101417 (2020). https://doi.org/10.1016/j.addma.2020.101417

    Article  Google Scholar 

  11. G. Chen, L.T. Li, J.W. Qiao, Z.M. Jiao, S.G. Ma, F.L. Ng, Z.G. Zhu, D. Zhao, Z.H. Wang, Mater. Lett. 238, 163–166 (2019). https://doi.org/10.1016/j.matlet.2018.11.176

    Article  Google Scholar 

  12. T.A. Listyawan, H. Lee, N. Park, U. Lee, J. Mater. Sci. Technol. 57, 123–130 (2020). https://doi.org/10.1016/j.jmst.2020.02.083

    Article  Google Scholar 

  13. I. Basu, J.T.M. De Hosson, Scr. Mater. 187, 148–156 (2020). https://doi.org/10.1016/j.scriptamat.2020.06.019

    Article  Google Scholar 

  14. X.H. An, S.D. Wu, Z.G. Wang, Z.F. Zhang, Prog. Mater. Sci. 101, 1–45 (2019). https://doi.org/10.1016/j.pmatsci.2018.11.001

    Article  Google Scholar 

  15. Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Nature 534(7606), 227–230 (2016). https://doi.org/10.1038/nature17981

    Article  ADS  Google Scholar 

  16. S. Chen, H.S. Oh, B. Gludovatz, S.J. Kim, E.S. Park, Z. Zhang, R.O. Ritchie, Q. Yu, Nat. Commun. 11(1), 826 (2020). https://doi.org/10.1038/s41467-020-14641-1

    Article  ADS  Google Scholar 

  17. J. Yang, Y.H. Jo, D.W. Kim, W.-M. Choi, H.S. Kim, B.-J. Lee, S.S. Sohn, S. Lee, Mater. Sci. Eng. A-Struct. 772, 138809 (2020). https://doi.org/10.1016/j.msea.2019.138809

    Article  Google Scholar 

  18. B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A-Struct. 375, 213–218 (2004). https://doi.org/10.1016/j.msea.2003.10.257

    Article  Google Scholar 

  19. B. Cantor, Entropy 16(9), 4749–4768 (2014). https://doi.org/10.3390/e16094749

    Article  ADS  Google Scholar 

  20. G. Chen, J.W. Qiao, Z.M. Jiao, D. Zhao, T.W. Zhang, S.G. Ma, Z.H. Wang, Scr. Mater. 167, 95–100 (2019). https://doi.org/10.1016/j.scriptamat.2019.04.002

    Article  Google Scholar 

  21. W. Guo, Z. Pei, X. Sang, J.D. Poplawsky, S. Bruschi, J. Qu, D. Raabe, H. Bei, Acta Mater. 170, 176–186 (2019). https://doi.org/10.1016/j.actamat.2019.03.024

    Article  ADS  Google Scholar 

  22. W.-M. Choi, Y.H. Jo, S.S. Sohn, S. Lee, B.-J. Lee, NPJ Comput. Mater. 4, 9 (2018). https://doi.org/10.1038/s41524-017-0060-9

    Article  ADS  Google Scholar 

  23. J. Li, Q. Fang, B. Liu, Y. Liu, Acta Mater. 147, 35–41 (2018). https://doi.org/10.1016/j.actamat.2018.01.002

    Article  ADS  Google Scholar 

  24. A. Stukowski, Model. Simul. Mater. Sci. Eng. 18(1), 015012 (2010). https://doi.org/10.1088/0965-0393/18/1/015012

    Article  Google Scholar 

  25. J. Li, L. Li, C. Jiang, Q. Fang, F. Liu, Y. Liu, P.K. Liaw, J. Mater. Sci. Technol. 57, 85–91 (2020). https://doi.org/10.1016/j.jmst.2020.03.064

    Article  Google Scholar 

  26. Q. Fang, Y. Chen, J. Li, C. Jiang, B. Liu, Y. Liu, P.K. Liaw, Int. J. Plast. 114, 161–173 (2019). https://doi.org/10.1016/j.ijplas.2018.10.014

    Article  Google Scholar 

  27. Y. Qi, M. Zhao, M. Feng, J. Alloys Compd. 851, 156923 (2021). https://doi.org/10.1016/j.jallcom.2020.156923

    Article  Google Scholar 

  28. J. Hou, Q. Li, C. Wu, L. Zheng, Materials (2019). https://doi.org/10.3390/ma12071010

    Article  Google Scholar 

  29. Y. Qi, X. Chen, M. Feng, Appl. Phys. A (2020). https://doi.org/10.1007/s00339-020-03714-z

    Article  Google Scholar 

  30. M. Kawamura, M. Asakura, N.L. Okamoto, K. Kishida, H. Inui, E.P. George, Acta. Mater. 203, 116454 (2021). https://doi.org/10.1016/j.actamat.2020.10.073

    Article  Google Scholar 

  31. C.W. Sinclair, R.G. Hoagland, Acta. Mater. 56(16), 4160–4171 (2008). https://doi.org/10.1016/j.actamat.2008.04.043

    Article  ADS  Google Scholar 

  32. J. Liu, Phys. Let. A 384(22), 126516 (2020). https://doi.org/10.1016/j.physleta.2020.126516

    Article  ADS  Google Scholar 

  33. Y. Yang, Q. He, Acta. Metall. Sin 57(4), 385–392 (2021). https://doi.org/10.11900/0412.1961.2020.00359

    Article  Google Scholar 

  34. T.Y. Gao, X. Jin, J.W. Qiao, H.J. Yang, Y. Zhang, Y.C. Wu, J. Appl. Phys (2021). https://doi.org/10.1063/5.0041352

    Article  Google Scholar 

  35. S.F. Liu, Y. Wu, H.T. Wang, W.T. Lin, Y.Y. Shang, J.B. Liu, K. An, X.J. Liu, H. Wang, Z.P. Lu, J. Alloys Compd. 792, 444–455 (2019). https://doi.org/10.1016/j.jallcom.2019.04.035

    Article  Google Scholar 

  36. W. Ji, W. Wang, H. Wang, J. Zhang, Y. Wang, F. Zhang, Z. Fu, Intermetallics 56, 24–27 (2015). https://doi.org/10.1016/j.intermet.2014.08.008

    Article  Google Scholar 

  37. H. Wang, D. Chen, X. An, Y. Zhang, S. Sun, Y. Tian, Z. Zhang, A. Wang, J. Liu, M. Song, S.P. Ringer, T. Zhu, X. Liao, Sci. Adv. 7(14), eabe3105 (2021). https://doi.org/10.1126/sciadv.abe3105

    Article  ADS  Google Scholar 

  38. S. Zhao, Z. Li, C. Zhu, W. Yang, Z. Zhang, D.E.J. Armstrong, P.S. Grant, R.O. Ritchie, M.A. Meyers, Sci. Adv. (2021). https://doi.org/10.1126/sciadv.abb3108

    Article  Google Scholar 

  39. J. Li, H. Chen, H. Feng, Q. Fang, Y. Liu, F. Liu, H. Wu, P.K. Liaw, J. Mater. Sci. Technol. 54, 14–19 (2020). https://doi.org/10.1016/j.jmst.2020.02.070

    Article  Google Scholar 

  40. P.R. Budarapu, R. Gracie, S.P.A. Bordas, T. Rabczuk, Comput. Mech. 53(6), 1129–1148 (2013). https://doi.org/10.1007/s00466-013-0952-6

    Article  Google Scholar 

  41. H. Talebi, M. Silani, S.P.A. Bordas, P. Kerfriden, T. Rabczuk, Comput. Mech. 53(5), 1047–1071 (2013). https://doi.org/10.1007/s00466-013-0948-2

    Article  Google Scholar 

Download references

Acknowledgements

The present work was supported by the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2020JM-41, No. 2020JM-33) and the Natural Science Foundation of Shaanxi Province (No. 2019TD-020).

Author information

Authors and Affiliations

Authors

Contributions

YY contributed to conceptualization, methodology, software, writing—original draft, formal analysis, investigation, visualization. SZ contributed to conceptualization, software, methodology. PH involved in methodology, writing—review and feedback, supervision, funding acquisition. FW helped in conceptualization, methodology, writing—review and feedback, supervision, funding acquisition.

Corresponding authors

Correspondence to Ping Huang or Fei Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1238 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Zhang, S., Huang, P. et al. Phase transformation-induced strengthening and multistage strain hardening in double-gradient-structured high-entropy alloys. Appl. Phys. A 128, 258 (2022). https://doi.org/10.1007/s00339-022-05382-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05382-7

Keywords

Navigation