Skip to main content

Advertisement

Log in

Design of a Z-scheme printable artificial leaf device based on CdS@TiO2/Pt/ITO/WO3@Co3O4 for water splitting

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Hydrogen and oxygen production based on photocatalytic monolithic water splitting is considered to be one of the effective ways to produce sustainable and clean energy. The key challenge in this process is to develop new photocatalysts that can simultaneously produce H2 and O2 at a stoichiometric ratio of 2:1 without the use of any sacrificial agents. In order to solve this problem, highly efficient and ingenious photosystems in nature have been studied intensively. Herein, we prepared printable Z-type composite photocatalysts CdS@TiO2/Pt/ITO/WO3/Co3O4 mimicking biological vegetative leaves in nature and constructed an “artificial leaf” device that completely decomposes water. We use an electron solid penetrating transporter ITO, which can rapidly transfer photogenerated electrons and photogenerated holes and reduce the compound rate of photogenerated carriers. Thus, the efficiency of photocatalytic total water dissolution is enhanced. This photocatalyst was able to produce both H2 and O2 in water with an H2 production rate of 75.93 μmol g−1 h−1 and an O2 production rate of 36.49 μmol g−1 h−1. We designed the oxygen-producing photocatalyst WO3/Co3O4, which produced oxygen at a rate of 159.21 μmol g−1 h−1 6 times higher than that of WO3 alone. Furthermore, the morphology, composition, and microstructures of the photocatalyst were characterized by field-emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and nitrogen adsorption–desorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Q. Jia, A. Iwase, A. Kudo, BiVO4–Ru/SrTiO3: Rh composite Z-scheme photocatalyst for solar water splitting. Chem. Sci. (2014). https://doi.org/10.1039/c3sc52810c

    Article  Google Scholar 

  2. Z. Li, J. Hou, B. Zhang, S. Cao, Y. Wu, Z. Gao, X. Nie, L. Sun, Two-dimensional Janus heterostructures for superior Z-scheme photocatalytic water splitting. Nano Energy 59, 537–544 (2019). https://doi.org/10.1016/j.nanoen.2019.03.004

    Article  Google Scholar 

  3. S. Cao, T.-S. Chan, Y.-R. Lu, X. Shi, B. Fu, Z. Wu, H. Li, K. Liu, S. Alzuabi, P. Cheng, M. Liu, T. Li, X. Chen, L. Piao, Photocatalytic pure water splitting with high efficiency and value by Pt/porous brookite TiO2 nanoflutes. Nano Energy (2020). https://doi.org/10.1016/j.nanoen.2019.104287

    Article  Google Scholar 

  4. S. Qin, Y. Lei, J. Guo, J.F. Huang, C.P. Hou, J.M. Liu, Constructing heterogeneous direct Z-scheme photocatalysts based on metal-organic cages and graphitic-C3N4 for high-efficiency photocatalytic water splitting. ACS Appl. Mater. Interfaces 13(22), 25960–25971 (2021). https://doi.org/10.1021/acsami.1c03617

    Article  Google Scholar 

  5. Q. Liu, X. Wang, Q. Yang, Z. Zhang, X. Fang, A novel route combined precursor-hydrothermal pretreatment with microwave heating for preparing holey g-C3N4 nanosheets with high crystalline quality and extended visible light absorption. Appl. Catal. B 225, 22–29 (2018)

    Article  Google Scholar 

  6. Y.-N. Liu, C.-C. Shen, N. Jiang, Z.-W. Zhao, X. Zhou, S.-J. Zhao, A.-W. Xu, g-C3N4 hydrogen-bonding viologen for significantly enhanced visible-light photocatalytic H2Evolution. ACS Catal. 7(12), 8228–8234 (2017). https://doi.org/10.1021/acscatal.7b03266

    Article  Google Scholar 

  7. P. Niu, L. Li, Overall photocatalytic water splitting of crystalline carbon nitride with facet engineering. Chem 6(10), 2439–2441 (2020). https://doi.org/10.1016/j.chempr.2020.09.009

    Article  Google Scholar 

  8. Y. Cho, B. Park, D.K. Padhi, I.A.M. Ibrahim, S. Kim, K.H. Kim, K.S. Lee, C.L. Lee, J.W. Han, S.H. Oh, J.H. Park, Disordered-layer-mediated reverse metal-oxide interactions for enhanced photocatalytic water splitting. Nano Lett. (2021). https://doi.org/10.1021/acs.nanolett.1c01368

    Article  Google Scholar 

  9. A. Kumar, P. Raizada, A. Hosseini-Bandegharaei, V.K. Thakur, V.-H. Nguyen, P. Singh, C-, N-vacancy defect engineered polymeric carbon nitride towards photocatalysis: viewpoints and challenges. J. Mater. Chem. A 9(1), 111–153 (2021). https://doi.org/10.1039/d0ta08384d

    Article  Google Scholar 

  10. F. Hu, L. Tao, H. Ye, X. Li, X. Chen, ZnO/WSe2 vdW heterostructure for photocatalytic water splitting. J. Mater. Chem. C 7(23), 7104–7113 (2019). https://doi.org/10.1039/c9tc00573k

    Article  Google Scholar 

  11. G. Ge, M. Liu, C. Liu, W. Zhou, D. Wang, L. Liu, J. Ye, Ultrathin FeOOH nanosheets as an efficient cocatalyst for photocatalytic water oxidation. J. Mater. Chem. A 7(15), 9222–9229 (2019). https://doi.org/10.1039/c9ta01740b

    Article  Google Scholar 

  12. H. Chen, X.-Y. Liu, S. Wang, X. Wang, Q. Wei, X. Jiang, F. Wang, K. Xu, J. Ke, Q. Zhang, Q. Gao, Y. Ke, Y.-T. Long, Z. Ning, Quaternary two dimensional Zn–Ag–In–S nanosheets for highly efficient photocatalytic hydrogen generation. J. Mater. Chem. A 6(25), 11670–11675 (2018). https://doi.org/10.1039/c8ta03726d

    Article  Google Scholar 

  13. C.F. Fu, X. Wu, J. Yang, Material design for photocatalytic water splitting from a theoretical perspective. Adv. Mater. 30(48), e1802106 (2018). https://doi.org/10.1002/adma.201802106

    Article  Google Scholar 

  14. Y. Wang, F. Silveri, M.K. Bayazit, Q. Ruan, Y. Li, J. Xie, C.R.A. Catlow, J. Tang, Bandgap engineering of organic semiconductors for highly efficient photocatalytic water splitting. Adv. Energy Mater. (2018). https://doi.org/10.1002/aenm.201801084

    Article  Google Scholar 

  15. G. Sun, C. Zhu, J. Zheng, B. Jiang, H. Yin, H. Wang, S. Qiu, J. Yuan, M. Wu, W. Wu, Q. Xue, Preparation of spherical and dendritic CdS@TiO2 hollow double-shelled nanoparticles for photocatalysis. Mater. Lett. 166, 113–115 (2016). https://doi.org/10.1016/j.matlet.2015.11.127

    Article  Google Scholar 

  16. B.J. Ng, L.K. Putri, X.Y. Kong, Y.W. Teh, P. Pasbakhsh, S.P. Chai, Z-scheme photocatalytic systems for solar water splitting. Adv. Sci. (Weinh) 7(7), 1903171 (2020). https://doi.org/10.1002/advs.201903171

    Article  Google Scholar 

  17. S. Okunaka, H. Kameshige, T. Ikeda, H. Tokudome, T. Hisatomi, T. Yamada, K. Domen, Z-scheme water splitting under near-ambient pressure using a zirconium oxide coating on printable photocatalyst sheets. Chemsuschem 13(18), 4906–4910 (2020). https://doi.org/10.1002/cssc.202001706

    Article  Google Scholar 

  18. S. Meng, C. Chen, X. Gu, H. Wu, Q. Meng, J. Zhang, S. Chen, X. Fu, D. Liu, W. Lei, Efficient photocatalytic H2 evolution, CO2 reduction and N2 fixation coupled with organic synthesis by cocatalyst and vacancies engineering. Appl. Catal. B (2021). https://doi.org/10.1016/j.apcatb.2020.119789

    Article  Google Scholar 

  19. M.S. Nasir, G. Yang, I. Ayub, S. Wang, W. Yan, Tin diselinide a stable co-catalyst coupled with branched TiO2 fiber and g-C3N4 quantum dots for photocatalytic hydrogen evolution. Appl. Catal. B (2020). https://doi.org/10.1016/j.apcatb.2020.118900

    Article  Google Scholar 

  20. P.D. Nguyen, T.M. Duong, P.D. Tran, Current progress and challenges in engineering viable artificial leaf for solar water splitting. J. Sci. Adv. Mater. Dev. 2(4), 399–417 (2017). https://doi.org/10.1016/j.jsamd.2017.08.006

    Article  Google Scholar 

  21. M. Ebihara, T. Ikeda, S. Okunaka, H. Tokudome, K. Domen, K. Katayama, Charge carrier mapping for Z-scheme photocatalytic water-splitting sheet via categorization of microscopic time-resolved image sequences. Nat. Commun. 12(1), 3716 (2021). https://doi.org/10.1038/s41467-021-24061-4

    Article  ADS  Google Scholar 

  22. Y. Qi, S. Chen, M. Li, Q. Ding, Z. Li, J. Cui, B. Dong, F. Zhang, C. Li, Achievement of visible-light-driven Z-scheme overall water splitting using barium-modified Ta3N5 as a H2-evolving photocatalyst. Chem. Sci. 8(1), 437–443 (2017). https://doi.org/10.1039/c6sc02750d

    Article  Google Scholar 

  23. C. Pornrungroj, V. Andrei, M. Rahaman, C. Uswachoke, H.J. Joyce, D.S. Wright, E. Reisner, Bifunctional perovskite-BiVO4 tandem devices for uninterrupted solar and electrocatalytic water splitting cycles. Adv. Funct. Mater. (2020). https://doi.org/10.1002/adfm.202008182

    Article  Google Scholar 

  24. L. Wang, X. Zheng, L. Chen, Y. Xiong, H. Xu, Van der Waals heterostructures comprised of ultrathin polymer nanosheets for efficient Z-scheme overall water splitting. Angew Chem. Int. Ed. Engl. 57(13), 3454–3458 (2018). https://doi.org/10.1002/anie.201710557

    Article  Google Scholar 

  25. J.W. Yang, I.J. Park, S.A. Lee, M.G. Lee, T.H. Lee, H. Park, C. Kim, J. Park, J. Moon, J.Y. Kim, H.W. Jang, Near-complete charge separation in tailored BiVO4-based heterostructure photoanodes toward artificial leaf. Appl. Catal. B (2021). https://doi.org/10.1016/j.apcatb.2021.120217

    Article  Google Scholar 

  26. Q. Wang, S. Okunaka, H. Tokudome, T. Hisatomi, M. Nakabayashi, N. Shibata, T. Yamada, K. Domen, Printable photocatalyst sheets incorporating a transparent conductive mediator for Z-scheme water splitting. Joule 2(12), 2667–2680 (2018). https://doi.org/10.1016/j.joule.2018.08.003

    Article  Google Scholar 

  27. J.W. Kim, H.J. Jeon, C.L. Lee, C.W. Ahn, Fabrication of three-dimensional hybrid nanostructure-embedded ITO and its application as a transparent electrode for high-efficiency solution processable organic photovoltaic devices. Nanoscale 9(9), 3033–3039 (2017). https://doi.org/10.1039/c6nr06552j

    Article  Google Scholar 

  28. N. Kornienko, J.Z. Zhang, K.K. Sakimoto, P. Yang, E. Reisner, Interfacing nature’s catalytic machinery with synthetic materials for semi-artificial photosynthesis. Nat. Nanotechnol. 13(10), 890–899 (2018). https://doi.org/10.1038/s41565-018-0251-7

    Article  ADS  Google Scholar 

  29. H. Zhang, W. Tian, Y. Li, H. Sun, M.O. Tadé, S. Wang, Heterostructured WO3@CoWO4 bilayer nanosheets for enhanced visible-light photo, electro and photoelectro-chemical oxidation of water. J. Mater. Chem. A 6(15), 6265–6272 (2018). https://doi.org/10.1039/c8ta00555a

    Article  Google Scholar 

  30. K. Wu, P. Wu, J. Zhu, C. Liu, X. Dong, J. Wu, G. Meng, K. Xu, J. Hou, Z. Liu, X. Guo, Synthesis of hollow core-shell CdS@TiO2/Ni2P photocatalyst for enhancing hydrogen evolution and degradation of MB. Chem. Eng. J. 360, 221–230 (2019). https://doi.org/10.1016/j.cej.2018.11.211

    Article  Google Scholar 

  31. S.-S. Yi, J.-M. Yan, B.-R. Wulan, Q. Jiang, Efficient visible-light-driven hydrogen generation from water splitting catalyzed by highly stable CdS@Mo2C–C core–shell nanorods. J. Mater. Chem. A 5(30), 15862–15868 (2017). https://doi.org/10.1039/c7ta03191b

    Article  Google Scholar 

  32. H. Jun, B. Im, J.Y. Kim, Y.-O. Im, J.-W. Jang, E.S. Kim, J.Y. Kim, H.J. Kang, S.J. Hong, J.S. Lee, Photoelectrochemical water splitting over ordered honeycomb hematite electrodes stabilized by alumina shielding. Energy Environ. Sci. 5(4), 6375–6382 (2012). https://doi.org/10.1039/c1ee02526k

    Article  Google Scholar 

  33. C. Ding, J. Shi, D. Wang, Z. Wang, N. Wang, G. Liu, F. Xiong, C. Li, Visible light driven overall water splitting using cocatalyst/BiVO4 photoanode with minimized bias. Phys Chem Chem Phys 15(13), 4589–4595 (2013). https://doi.org/10.1039/c3cp50295c

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported financially by Open subject of Key Laboratory of Materials Oriented Chemical Engineering at Universities of Education Department of Xinjiang Uygur Autonomous Region (20201001), Special training program for minority science and technology backbone in the natural science program of the Autonomous Region (2018D03001), Cross projects of Nanyang Institute of Technology (330078) and students innovation project of Nanyang Institute of technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, P., Wu, K., Peng, X. et al. Design of a Z-scheme printable artificial leaf device based on CdS@TiO2/Pt/ITO/WO3@Co3O4 for water splitting. Appl. Phys. A 128, 80 (2022). https://doi.org/10.1007/s00339-021-05223-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05223-z

Keywords

Navigation