Skip to main content
Log in

Adsorption and desorption behavior of titanium-decorated polycrystalline graphene toward hydrogen storage: a molecular dynamics study

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The hydrogen adsorption and desorption capacity of polycrystalline graphene sheets (PGs) with and without titanium (Ti) decoration is investigated using molecular dynamics simulations. Interatomic interactions of PGs are modeled using Tersoff potential, and the remainder of interactions are calculated via Lennard‒Jones potential. The effect of grain size and Ti concentration on the mechanical properties and hydrogen adsorption capacity of PGs is studied. The presence of grain boundaries in PGs reduces their mechanical properties, while the decoration of Ti adatoms does not significantly alter the mechanical properties of PGs. PGs showed a ~ 57% increase in the gravimetric density of H2 at 300 K and 50 bar compared to the pristine graphene sheet. At 100 bar pressure, PGs with 1% Ti concentration achieved a gravimetric density of 9.9 wt.% and 3.2 wt.% at 77 and 300 K, respectively. In Ti-decorated PGs, the desorption curve follows the same path at 300 K as the adsorption curve with increasing Ti concentration, and the desorption curve diverges from the adsorption curve after 1.5% Ti concentration at 77 K. The potential use of the isosteric enthalpy of adsorption to determine the adsorbent’s capability for adsorbing H2 molecules is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. L. Schlapbach, A. Züttel, Hydrogen-storage materials for mobile applications. Nature 414(6861), 353–358 (2001). https://doi.org/10.1038/35104634

    Article  ADS  Google Scholar 

  2. G.W. Crabtree, M.S. Dresselhaus, M.V. Buchanan, The hydrogen economy. Phys. Today 57(12), 39–44 (2004). https://doi.org/10.1063/1.1878333

    Article  ADS  Google Scholar 

  3. A. Léon, Introduction. Hydrogen Technol. 1, 11–13 (2008). https://doi.org/10.1007/978-3-540-69925-5_1

    Article  ADS  Google Scholar 

  4. L. Schlapbach, Hydrogen-fuelled vehicles. Nature 460(7257), 809–811 (2009). https://doi.org/10.1038/460809a

    Article  ADS  Google Scholar 

  5. K. Mazloomi, C. Gomes, Hydrogen as an energy carrier: prospects and challenges. Renew. Sustain. Energy Rev. 16(5), 3024–3033 (2012). https://doi.org/10.1016/j.rser.2012.02.028

    Article  Google Scholar 

  6. P. Jena, Materials for hydrogen storage: Past, present, and future. J. Phys. Chem. Lett. 2(3), 206–211 (2011). https://doi.org/10.1021/jz1015372

    Article  Google Scholar 

  7. A. Léon, Hydrogen Storage. Hydrogen Technol. 3, 81–128 (2008). https://doi.org/10.1007/978-3-540-69925-5_3

    Article  ADS  Google Scholar 

  8. J. Li, T. Furuta, H. Goto, T. Ohashi, Y. Fujiwara, S. Yip, Theoretical evaluation of hydrogen storage capacity in pure carbon nanostructures. J. Chem. Phys. 119(4), 2376–2385 (2003). https://doi.org/10.1063/1.1582831

    Article  ADS  Google Scholar 

  9. N.A.A. Rusman, M. Dahari, A review on the current progress of metal hydrides material for solid-state hydrogen storage applications. Int. J. Hydrogen Energy 41(28), 12108–12126 (2016). https://doi.org/10.1016/j.ijhydene.2016.05.244

    Article  Google Scholar 

  10. E. Boateng, A. Chen, Recent advances in nanomaterial-based solid-state hydrogen storage. Mater. Today Adv. 6, 100022 (2020). https://doi.org/10.1016/j.mtadv.2019.100022

    Article  Google Scholar 

  11. K.S. Chan, M.A. Miller, X. Peng, First-principles computational study of hydrogen storage in silicon clathrates. Mater. Res. Lett. 6(1), 72–78 (2018). https://doi.org/10.1080/21663831.2017.1396261

    Article  Google Scholar 

  12. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896

    Article  ADS  Google Scholar 

  13. M. Pumera, Graphene-based nanomaterials for energy storage. Energy Environ. Sci. 4(3), 668–674 (2011). https://doi.org/10.1039/c0ee00295j

    Article  Google Scholar 

  14. C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008). https://doi.org/10.1126/science.1157996

    Article  ADS  Google Scholar 

  15. Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 22(35), 3906–3924 (2010). https://doi.org/10.1002/adma.201001068

    Article  Google Scholar 

  16. S. Patchkovskii, J.S. Tse, S.N. Yurchenko, L. Zhechkov, T. Heine, G. Seifert, Graphene nanostructures as tunable storage media for molecular hydrogen. Proc. Natl. Acad. Sci. U.S.A. 102(30), 10439–10444 (2005). https://doi.org/10.1073/pnas.0501030102

    Article  ADS  Google Scholar 

  17. Y. Okamoto, Y. Miyamoto, Ab initio investigation of physisorption of molecular hydrogen on planar and curved graphenes. J. Phys. Chem. B 105(17), 3470–3474 (2001). https://doi.org/10.1021/jp003435h

    Article  Google Scholar 

  18. T. Heine, L. Zhechkov, G. Seifert, Hydrogen storage by physisorption on nanostructured graphite platelets. Phys. Chem. Chem. Phys. 6(5), 980–984 (2004). https://doi.org/10.1039/b316209e

    Article  Google Scholar 

  19. V. Tozzini, V. Pellegrini, Reversible hydrogen storage by controlled buckling of graphene layers. J. Phys. Chem. C 115(51), 25523–25528 (2011). https://doi.org/10.1021/jp208262r

    Article  Google Scholar 

  20. S.I. Kundalwal, M.C. Ray, Shear lag analysis of a novel short fuzzy fiber-reinforced composite. Acta Mech. 225(9), 2621–2643 (2014). https://doi.org/10.1007/S00707-014-1095-3

    Article  MathSciNet  MATH  Google Scholar 

  21. S.I. Kundalwal, M.C. Ray, S.A. Meguid, Shear lag model for regularly staggered short fuzzy fiber reinforced composite. ASME J. Appl. Mech. 81(9), 091001 (2014). https://doi.org/10.1115/1.4027801

    Article  ADS  Google Scholar 

  22. S.I. Kundalwal, M.C. Ray, Improved thermoelastic coefficients of a novel short fuzzy fiber-reinforced composite with wavy carbon nanotubes. J. Mech. Mater. Struct. 9(1), 1–25 (2014). https://doi.org/10.2140/JOMMS.2014.9.1

    Article  Google Scholar 

  23. S.I. Kundalwal, M.C. Ray, Thermoelastic properties of a novel fuzzy fiber-reinforced composite. ASME J. Appl. Mech. 80(6), 061011 (2013). https://doi.org/10.1115/1.4023691/370366

    Article  ADS  Google Scholar 

  24. B. Szczęśniak, J. Choma, M. Jaroniec, Gas adsorption properties of graphene-based materials. Adv. Coll. Interface. Sci. 243, 46–59 (2017). https://doi.org/10.1016/j.cis.2017.03.007

    Article  Google Scholar 

  25. H.G. Shiraz, O. Tavakoli, Investigation of graphene-based systems for hydrogen storage. Renew. Sustain. Energy Rev. 74, 104–109 (2017). https://doi.org/10.1016/j.rser.2017.02.052

    Article  Google Scholar 

  26. K.K. Gangu, S. Maddila, S.B. Mukkamala, S.B. Jonnalagadda, Characteristics of MOF, MWCNT and graphene containing materials for hydrogen storage: A review. J. Energy Chem. 30, 132–144 (2019). https://doi.org/10.1016/j.jechem.2018.04.012

    Article  Google Scholar 

  27. V. Jain, B. Kandasubramanian, Functionalized graphene materials for hydrogen storage. J. Mater. Sci. 55(5), 1865–1903 (2020). https://doi.org/10.1007/s10853-019-04150-y

    Article  ADS  Google Scholar 

  28. O.V. Yazyev, Y.P. Chen, Polycrystalline graphene and other two-dimensional materials. Nat. Nanotechnol. 9(10), 755–767 (2014). https://doi.org/10.1038/nnano.2014.166

    Article  ADS  Google Scholar 

  29. P.Y. Huang, C.S. Ruiz-Vargas, Z.A.M. Van Der, W.S. Whitney, M.P. Levendorf, J.W. Kevek, S. Garg, J.S. Alden, C.J. Hustedt, Y. Zhu et al., Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469(7330), 389–392 (2011). https://doi.org/10.1038/nature09718

    Article  ADS  Google Scholar 

  30. M.Q. Chen, S.S. Quek, Z.D. Sha, C.H. Chiu, Q.X. Pei, Y.W. Zhang, Effects of grain size, temperature and strain rate on the mechanical properties of polycrystalline graphene - A molecular dynamics study. Carbon 85, 135–146 (2015). https://doi.org/10.1016/j.carbon.2014.12.092

    Article  Google Scholar 

  31. A.R. Alian, S.A. Meguid, S.I. Kundalwal, Unraveling the influence of grain boundaries on the mechanical properties of polycrystalline carbon nanotubes. Carbon 125, 180–188 (2017). https://doi.org/10.1016/j.carbon.2017.09.056

    Article  Google Scholar 

  32. M. Izadifar, R. Abadi, A. Namazian, T. Rabczuk, Investigation into the effect of doping of boron and nitrogen atoms in the mechanical properties of single-layer polycrystalline graphene. Comput. Mater. Sci. 138, 435–447 (2017). https://doi.org/10.1016/j.commatsci.2017.06.038

    Article  Google Scholar 

  33. M. Izadifar, R. Abadi, A.H. Nezhad Shirazi, N. Alajlan, T. Rabczuk, Nanopores creation in boron and nitrogen doped polycrystalline graphene: A molecular dynamics study. Physica E 99, 24–36 (2018). https://doi.org/10.1016/j.physe.2017.12.036

    Article  ADS  Google Scholar 

  34. Y. Guo, D.H. Seo, J. Hong, D. Su, H. Wang, J. Zheng, X. Li, A.B. Murphy, K. Ostrikov K (Ken), Controlling the adsorption behavior of hydrogen at the interface of polycrystalline CVD graphene. Int. J. Hydrogen Energy 43(41):18735–18744 (2018). https://doi.org/10.1016/j.ijhydene.2018.07.204

  35. S. Bhattacharya, C. Majumder, G.P. Das, Ti-decorated BC4N sheet: a planar nanostructure for high-capacity hydrogen storage. J. Phys. Chem. C 113(36), 15783–15787 (2009). https://doi.org/10.1021/jp905853x

    Article  Google Scholar 

  36. H.L. Park, S.C. Yi, Y.C. Chung, Hydrogen adsorption on Li metal in boron-substituted graphene: An ab initio approach. Int. J. Hydrogen Energy 35(8), 3583–3587 (2010). https://doi.org/10.1016/j.ijhydene.2010.01.073

    Article  Google Scholar 

  37. F.D. Wang, F. Wang, N.N. Zhang, Y.H. Li, S.W. Tang, H. Sun, Y.F. Chang, R.S. Wang, High-capacity hydrogen storage of Na-decorated graphene with boron substitution: First-principles calculations. Chem. Phys. Lett. 555, 212–216 (2013). https://doi.org/10.1016/j.cplett.2012.11.015

    Article  ADS  Google Scholar 

  38. S. Lee, M. Lee, H. Choi, D.S. Yoo, Y.C. Chung, Effect of nitrogen induced defects in Li dispersed graphene on hydrogen storage. Int. J. Hydrogen Energy 38(11), 4611–4617 (2013). https://doi.org/10.1016/j.ijhydene.2013.01.180

    Article  Google Scholar 

  39. L. Zhang, S. Zhang, P. Wang, C. Liu, S. Huang, H. Tian, The effect of electric field on Ti-decorated graphyne for hydrogen storage. Comput. Theor. Chem. 1035, 68–75 (2014). https://doi.org/10.1016/j.comptc.2014.02.032

    Article  Google Scholar 

  40. A. Lebon, J. Carrete, L. J. Gallego, A. Vega A. Ti-decorated zigzag graphene nanoribbons for hydrogen storage. A van der Waals-corrected density-functional study. Int. J. Hydrogen Energy 40(14):4960–4968 (2018). https://doi.org/10.1016/j.ijhydene.2014.12.134

  41. L. Yuan, L. Kang, Y. Chen, D. Wang, J. Gong, C. Wang, M. Zhang, X. Wu, Hydrogen storage capacity on Ti-decorated porous graphene: First-principles investigation. Appl. Surf. Sci. 434, 843–849 (2018). https://doi.org/10.1016/j.apsusc.2017.10.231

    Article  ADS  Google Scholar 

  42. Z. Goharibajestani, A. Yürüm, Y. Yürüm, Effect of transition metal oxide nanoparticles on gas adsorption properties of graphene nanocomposites. Appl. Surf. Sci. 475, 1070–1076 (2019). https://doi.org/10.1016/j.apsusc.2019.01.052

    Article  ADS  Google Scholar 

  43. M. Rafique, M.A. Uqaili, N.H. Mirjat, M.A. Tunio, Y. Shuai, Ab-initio investigations on titanium (Ti) atom-doped divacancy monolayer h-BN system for hydrogen storage systems. Physica E 109, 169–178 (2019). https://doi.org/10.1016/j.physe.2019.01.015

    Article  ADS  Google Scholar 

  44. D. Kag, N. Luhadiya, N.D. Patil, S.I. Kundalwal, Strain and defect engineering of graphene for hydrogen storage via atomistic modelling. Int. J. Hydrogen Energy 46(43), 22599–22610 (2021). https://doi.org/10.1016/j.ijhydene.2021.04.098

    Article  Google Scholar 

  45. A. Nuhnen, C. Janiak, A practical guide to calculate the isosteric heat/enthalpy of adsorption via adsorption isotherms in metal–organic frameworks. MOFs. Dalton Trans. 49(30), 10295–10307 (2020). https://doi.org/10.1039/D0DT01784A

    Article  Google Scholar 

  46. Y. Wei, C. Jiang, Y. Zhang, X. Li, L. Zhang, P. Wang, Y. Fang, Investigation of photocatalysis reactions on the single-crystal and polycrystalline graphenes. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 251, 119441 (2021). https://doi.org/10.1016/J.SAA.2021.119441

    Article  Google Scholar 

  47. J.S. Roh, J.K. Jang, N. Kwon, S. Bok, Y.J. Kim, C. Jeon, H.W. Yoon, H.W. Kim, B. Lim, H.B. Park, Macroscopic properties of single-crystalline and polycrystalline graphene on soft substrate for transparent electrode applications. Carbon 178, 181–189 (2021). https://doi.org/10.1016/J.CARBON.2021.02.097

    Article  Google Scholar 

  48. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1–19 (1995). https://doi.org/10.1006/jcph.1995.1039

    Article  ADS  MATH  Google Scholar 

  49. J. Tersoff, Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. Phys. Rev. B 39(8), 5566–5568 (1989). https://doi.org/10.1103/PhysRevB.39.5566

    Article  ADS  Google Scholar 

  50. S.I. Kundalwal, V.K. Choyal, N. Luhadiya, V. Choyal, Effect of carbon doping on electromechanical response of boron nitride nanosheets. Nanotechnology 31(40), 405710 (2020). https://doi.org/10.1088/1361-6528/ab9d43

    Article  Google Scholar 

  51. S.I. Kundalwal, V.K. Choyal, V. Choyal, S.K. Nevhal, N. Luhadiya, Enhancement of piezoelectric and flexoelectric response of boron nitride sheet superlattices via interface and defect engineering. Physica E 127, 114563 (2021). https://doi.org/10.1016/j.physe.2020.114563

    Article  Google Scholar 

  52. B. Faria, C. Guarda, N. Silvestre, J.N.C. Lopes, CNT-reinforced iron and titanium nanocomposites: Strength and deformation mechanisms. Compos. B Eng. 187, 107836 (2020). https://doi.org/10.1016/j.compositesb.2020.107836

    Article  Google Scholar 

  53. S. Zhen, G.J. Davies, Calculation of the Lennard-Jones–m potential energy parameters for metals. Phys. Status Solidi (a) 78(2), 595–605 (1983). https://doi.org/10.1002/pssa.2210780226

    Article  ADS  Google Scholar 

  54. R.F. Cracknell, Molecular simulation of hydrogen adsorption in graphitic nanofibres. Phys. Chem. Chem. Phys. 3(11), 2091–2097 (2001). https://doi.org/10.1039/b100144m

    Article  Google Scholar 

  55. S. Chu, L. Hu, X. Hu, M. Yang, J. Deng, Titanium-embedded graphene as high-capacity hydrogen-storage media. Int. J. Hydrogen Energy 36(19), 12324–12328 (2011). https://doi.org/10.1016/j.ijhydene.2011.07.015

    Article  Google Scholar 

  56. Z. Yang, Y. Huang, F. Ma, Y. Sun, K. Xu, P.K. Chu, Temperature and strain-rate effects on the deformation behaviors of nano-crystalline graphene sheets. Euro. Phys. J. B 88, 135 (2015). https://doi.org/10.1140/epjb/e2015-50850-x

    Article  ADS  Google Scholar 

  57. N. Luhadiya, S.I. Kundalwal, S.K. Sahu, Investigation of hydrogen adsorption behavior of graphene under varied conditions using a novel energy-centered method. Carbon Lett. 31, 655–666 (2021). https://doi.org/10.1007/s42823-021-00236-3

    Article  Google Scholar 

  58. J. Tóth, Calculation of the BET-compatible surface area from any Type I isotherms measured above the critical temperature. J. Colloid Interface Sci. 225(2), 378–383 (2000). https://doi.org/10.1006/jcis.2000.6723

    Article  ADS  Google Scholar 

  59. T.K.A. Hoang, D.M. Antonelli, Exploiting the Kubas Interaction in the Design of Hydrogen Storage Materials. Adv. Mater. 21(18), 1787–1800 (2009). https://doi.org/10.1002/ADMA.200802832

    Article  Google Scholar 

  60. J. Skipper C V., Ahmad Hamaed, M. Antonelli D, Nikolas Kaltsoyannis. The Kubas interaction in M( ii ) (M = Ti, V, Cr) hydrazine-based hydrogen storage materials: a DFT study. Dalton Trans. 41(28):8515–8523 (2012). https://doi.org/10.1039/C2DT30383C

Download references

Acknowledgements

This work is supported by the Department of Science and Technology (DST), Ministry of Science and Technology, Government of India. Authors SIK and SKS have received a research grant from the DST (DST/TMD/HFC/2K18/88). Author NL acknowledges the support from the Prime Minister’s Research Fellows (PMRF) Program, Ministry of Education, Government of India (PMRF-192002-780).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Kundalwal.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luhadiya, N., Kundalwal, S.I. & Sahu, S.K. Adsorption and desorption behavior of titanium-decorated polycrystalline graphene toward hydrogen storage: a molecular dynamics study. Appl. Phys. A 128, 49 (2022). https://doi.org/10.1007/s00339-021-05194-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05194-1

Keywords

Navigation