Skip to main content
Log in

Improved toughness, electrical conductivity and optical properties of bioactive borosilicate glasses for orthopedic applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Bioactive glasses are among the most preferred candidate materials for use in orthopedic applications, thanks to their outstanding properties. However, their low toughness and electrical conductivity are the main disadvantages of their biomedical uses. To improve these mentioned drawbacks, 20Na2O–25CaO–5SiO2-xAg2O–(50 − x)B2O3 glasses, x = 0, 2.5, 5, 7.5 and 10 wt.%, were prepared by melt-quenching method. The amorphous structure together with the chemical composition of these glasses was examined by X-ray diffraction (XRD) technique and Fourier-transform infrared (FTIR) spectroscopy. Then, physical, mechanical, optical and dielectric properties of the prepared glasses were measured. The bioactivity of the prepared samples after being dipped in simulated body fluid was evaluated using the XRD technique. The obtained results showed that increasing the Ag2O content was responsible for improving the fracture toughness of the sample to about 83% without dramatic decreases in other mechanical properties indicating that the prepared samples are desirable for load-bearing sites applications. Also, this increase in Ag2O content was responsible for the improvement in electrical conductivity and all optical properties. Moreover, the presence of Ag2O had a positive role in enhancing the bioactivity of the glass samples. Based on these results, it can be concluded that the prepared glass samples are promising for orthopedic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M.A. Taha, R.A. Youness, M.F. Zawrah, Phase composition, sinterability and bioactivity of amorphous nano-CaO-SiO2-CuO powder synthesized by sol-gel technique. Ceram. Int. 46, 24462–24471 (2020)

    Article  Google Scholar 

  2. D.E. Abulyazied, A.M. Alturki, R.A. Youness, H.M. Abomostafa, Synthesis, structural and biomedical characterization of hydroxyapatite/borosilicate bioactive glass nanocomposites. J. Inorg. Organomet. Polym. Mater. 31, 4077–4092 (2021)

    Article  Google Scholar 

  3. L.L. Hench, The story of Bioglass®. J. Mater. Sci. Mater. Med. 17, 967–978 (2006)

    Article  Google Scholar 

  4. R.L. Siqueira, N. Maurmann, D. Burguêz, D.P. Pereira, A.N.S. Rastelli, O. Peitl, P. Pranke, E.D. Zanotto, Bioactive gel-glasses with distinctly different compositions: bioactivity, viability of stem cells and antibiofilm effect against Streptococcus mutans. Mater. Sci. Eng. C 76, 233–241 (2017)

    Article  Google Scholar 

  5. E.M.A. Khalil, R.A. Youness, M.S. Amer, M.A. Taha, Mechanical properties, in vitro and in vivo bioactivity assessment of Na2O-CaO-P2O5-B2O3-SiO2 glass-ceramics. Ceram. Int. 44, 7867–7876 (2018)

    Article  Google Scholar 

  6. A.M. Alturki, D.E. Abulyazied, M.A. Taha, H.M. Abomostafa, R.A. Youness, A study to evaluate the bioactivity behavior and electrical properties of hydroxyapatite/Ag2O-borosilicate glass nanocomposites for biomedical applications. Inorg. Organomet Polym Mater. (2021) In Press.

  7. Q. Fu, W. Jia, G.Y. Lau, A.P. Tomsia, Strength, toughness and reliability of a porous glass/biopolymer composite scaffold. J. Biomed. Mater. Res. B Appl. Biomater. 106(3), 1209–1217 (2018)

    Article  Google Scholar 

  8. R. Samudrala, P. Abdul Azeem, V. Penugurti, B. Manavathi, Cytocompatibility studies of titania-doped calcium borosilicate bioactive glasses in-vitro. Mater. Sci. Eng. C 77, 772–779 (2017)

    Article  Google Scholar 

  9. P. Balasubramanian, T. Büttner, V.M. Pacheco, A.R. Boccaccini, Boron-containing bioactive glasses in bone and soft tissue engineering. J. Eur. Ceram. Soc. 38(3), 855–869 (2018)

    Article  Google Scholar 

  10. M. Ojansivu, A. Mishra, S. Vanhatupa, M. Juntunen, A. Larionova, J. Massera, S. Miettinen, The effect of S53P4 based borosilicate glasses and glass dissolution products on the osteogenic commitment of human adipose stem cells. PLoS One 13(8), 1–20 (2018)

    Article  Google Scholar 

  11. R. Samudrala, G.V.N. Reddy, B. Manavathi, P.A. Azeem, Synthesis, characterization and cytocompatibility of ZrO2 doped borosilicate bioglasses. J. Non-Cryst. Solids 447, 150–155 (2016)

    Article  ADS  Google Scholar 

  12. S.M. Wiederhorn, Y.-H. Chae, C.G. Simon, J. Cahn, Y. Deng, D. Day, Cell adhesion to borate glasses by colloidal probe microscopy. Acta Biomater. 7, 2256–2263 (2011)

    Article  Google Scholar 

  13. A.R. Moussa, A.M. El-kady, A.N. Elboraey, D.Y. Zaki, H.M. Elgamily, M.I. Ramzy, G.T. El-Bassyouni, Antimicrobial properties of tissue conditioner containing silver doped bioactive glass nanoparticles: in vitro study. Adv. Nat. Sci. Nanosci. Nanotechnol. 9, 1–10 (2018)

    Article  Google Scholar 

  14. A.C. Nwanya, P.E. Ugwuoke, B.A. Ezekoye, R.U. Osuji, F.I. Ezema, Structural and optical properties of chemical bath deposited silver oxide thin films: role of deposition time. Adv. Mater. Sci. Eng. 2013, 1–8 (2018)

    Article  Google Scholar 

  15. V. Sharma, S.P. Singh, G.S. Mudahar, K.S. Thind, Synthesis and optical characterization of silver doped sodium borate glasses. NJGC 2, 133–137 (2012)

    Google Scholar 

  16. N. Ranga, E. Poonia, S. Jakhar, A.K. Sharma, A. Kumar, S. Devi, S. Duhan, Enhanced antimicrobial properties of bioactive glass using strontium and silver oxide nanocomposites. J. Asian Ceram. Soc. 7(1), 75–81 (2019)

    Article  Google Scholar 

  17. K.T. Arul, J.R. Ramya, S.N. Kalkura, Impact of dopants on the electrical and optical properties of hydroxyapatite. IntechOpen (2020).

  18. H. Kamal, Characterization of silver-borate glasses for biomedical applications. IOSR-JAP 11(3), 18–26 (2019)

    Google Scholar 

  19. A.Z. Khalf, D.A. Hall, Influence of barium borosilicate glass on microstructure and dielectric properties of (Ba, Ca)(Zr, Ti)O3 ceramics. J. Eur. Ceram. Soc. 38(13), 4422–4432 (2018)

    Article  Google Scholar 

  20. S. Singh, G. Kalia, K. Singh, Effect of intermediate oxide (Y2O3) on thermal, structural and optical properties of lithium borosilicate glasses. J. Mol. Struct. 1086, 239–245 (2015)

    Article  ADS  Google Scholar 

  21. M.M.R.A. Lima, R.C.C. Monteiro, M.P.F. Graca, M.G.F. de Silva, Structural, electrical and thermal properties of borosilicate glass-alumina composites. J. Alloys Compd. 538, 66–72 (2012)

    Article  Google Scholar 

  22. R. Pflieger, M. Malki, Y. Guari, J. Larionova, A. Grandjean, Electrical conductivity of RuO2-borosilicate glasses: effect of the synthesis route. J. Am. Ceram. Soc. 92(7), 1560–1566 (2009)

    Article  Google Scholar 

  23. L.A. Guo, Q. Tai, Microstructure and properties of calcium borosilicate and borosilicate glass-ceramic composites. Key Eng. Mater. 368–372, 1422–1425 (2008)

    Google Scholar 

  24. T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity. Biomaterials 27(15), 2907–2915 (2006)

    Article  Google Scholar 

  25. T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, T. Yamamuro, Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramics A-W. J. Biomed. Mater. Res. A 24, 721–734 (1990)

    Article  Google Scholar 

  26. R.L. Siqueira, E.D. Zanotto, The influence of phosphorus precursors on the synthesis and bioactivity of SiO2-CaO-P2O5 sol-gel glasses and glass-ceramics. J. Mater. Sci. Mater. Med. 24, 365–379 (2013)

    Article  Google Scholar 

  27. R.A. Youness, M.A. Taha, H. Elhaes, M. Ibrahim, Molecular modeling, FTIR spectral characterization and mechanical properties of carbonated-hydroxyapatite prepared by mechanochemical synthesis. Mater. Chem. Phys. 190, 209–218 (2017)

    Google Scholar 

  28. R.A. Youness, M.A. Taha, H. Elhaes, M. Ibrahim, Preparation, Fourier transform infrared characterization and mechanical properties of hydroxyapatite nanopowders. J. Comput. Theor. Nanosci. 14, 2409–2415 (2017)

    Article  Google Scholar 

  29. R.A. Youness, M.A. Taha, A. El-Kheshen, N. El-Faramawy, M. Ibrahim, In vitro bioactivity evaluation, antimicrobial behavior and mechanical properties of cerium-containing phosphate glasses. Mater. Res. Express 6, 075212 (2019)

    Article  ADS  Google Scholar 

  30. R.A. Youness, M.A. Taha, M. Ibrahim, A. El-Kheshen, FTIR spectral characterization, mechanical properties and antimicrobial properties of La-doped phosphate-based bioactive glasses. Silicon 10, 1151–1159 (2018)

    Article  Google Scholar 

  31. W.S. AbuShanab, E.B. Moustafa, M.A. Taha, R.A. Youness, Synthesis and structural properties characterization of titania/zirconia/calcium silicate nanocomposites for biomedical applications. Appl. Phys. A 126, 1–12 (2020)

    Article  Google Scholar 

  32. M.A. Taha, R.A. Youness, G.T. El-Bassyouni, M.A. Azooz, FTIR spectral characterization, mechanical and electrical properties of P2O5-Li2O-CuO glass-ceramics. Silicon 13, 3075–3084 (2021)

    Article  Google Scholar 

  33. R.A. Youness, M.A. Taha, M.A. Ibrahim, Effect of sintering temperatures on the in vitro bioactivity, molecular structure and mechanical properties of titanium/carbonated hydroxyapatite nanobiocomposites. J. Mol. Struct. 1150, 188–195 (2017)

    Article  ADS  Google Scholar 

  34. R.A. Youness, M.A. Taha, M. Ibrahim, In vitro bioactivity, physical and mechanical properties of carbonated-fluoroapatite during mechanochemical synthesis. Ceram. Int. 44, 21323–21329 (2018)

    Article  Google Scholar 

  35. R.A. Youness, M.A. Taha, A.A. El-Kheshen, M. Ibrahim, Influence of the addition of carbonated hydroxyapatite and selenium dioxide on mechanical properties and in vitro bioactivity of borosilicate inert glass. Ceram. Int. 44, 20677–20685 (2018)

    Article  Google Scholar 

  36. X. Cui, Y. Zhang, H. Wang, Y. Gu, L. Li, J. Zhou, S. Zhao, W. Huang, N. Zhou, D. Wang, H. Pan, M.N. Rahaman, An injectable borate bioactive glass cement for bone repair: preparation, bioactivity and setting mechanism. J. Non-Crys. Solids 432, 150–157 (2018)

    Article  ADS  Google Scholar 

  37. M.A. Marzouk, F.H. ElBatal, N.A. Ghoneim, In vitro bioactivity behavior of modified multicomponent borate glasses containing dopants of Ag2O, CuO, CeO2 or V2O5. Appl. Phys. 124, 1–12 (2018)

    Article  Google Scholar 

  38. R. Koohkan, T. Hooshmand, M. Tahriri, D. Mohebbi-Kalhori, Synthesis, characterization and in vitro bioactivity of mesoporous copper silicate bioactive glasses. Ceram. Int. 44, 2390–2399 (2018)

    Article  Google Scholar 

  39. M.A. Taha, R.A. Youness, M. Ibrahim, Biocompatibility, physico-chemical and mechanical properties of hydroxyapatite-based silicon dioxide nanocomposites for biomedical applications. Ceram. Int. 46, 23599–23610 (2020)

    Article  Google Scholar 

  40. M.A. Marzouk, H.A. ElBatal, In vitro bioactivity of soda lime borate glasses with substituted SrO in sodium phosphate solution. Process. Appl. Ceram. 8(3), 167–177 (2014)

    Article  Google Scholar 

  41. F.H. ElBatal, A. ElKheshen, Preparation and characterization of some substituted bioglasses and their ceramic derivatives from the system SiO2-Na2O-CaO-P2O5 and effect of gamma irradiation. Mater. Chem. Phys. 110, 352–362 (2008)

    Article  Google Scholar 

  42. R.A. Youness, M.A. Taha, M. Ibrahim, In vitro bioactivity, molecular structure and mechanical properties of zirconia-carbonated hydroxyapatite nanobiocomposites sintered at different temperatures. Mater. Chem. Phys. 239, 122011 (2020)

    Article  Google Scholar 

  43. Q. Fu, M.N. Rahaman, H. Fu, X. Liu, Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications I preparation and in vitro degradation. J. Biomed. Mater. Res. A 95(1), 164–171 (2010)

    Article  Google Scholar 

  44. N. Krishnamacharyulu, G.J. Mohini, G.S. Baskaran, V.R. Kumar, N. Veeraiah, Investigation on silver doped B2O3-SiO2-P2O5-Na2O-CaO bioglass system for biomedical applications. J. Alloys Compd. 734, 318–328 (2018)

    Article  Google Scholar 

  45. H. Fu, Q. Fu, N. Zhou, W. Huang, M.N. Rahaman, In vitro evaluation of borate-based bioactive glass scaffolds prepared by a polymer foam replication method. Mater Sci. Eng. C 29, 2275–2281 (2009)

    Article  Google Scholar 

  46. P. Kumar, B.S. Dehiya, A. Sindhu, Bioceramics for hard tissue engineering applications: a review. Int. J. Appl. Eng. Res. 13(5), 2744–2752 (2018)

    Google Scholar 

  47. I. Ahmed, M. Lewis, I. Olsen, J.C. Knowles, Phosphate glasses for tissue engineering: Part 1 Processing and characterisation of a ternary-based P2O5-CaO-Na2O glass system. Biomaterials 25(3), 491–499 (2004)

    Article  Google Scholar 

  48. N. Sharmin, M.S. Hasan, A.J. Parsons, D. Furniss, C.A. Scotchford, I. Ahmed, C.D. Rudd, Effect of boron addition on the thermal, degradation and cytocompatibility properties of phosphate-based glasses. J. BioMed Res. Int. 2013, 1–12 (2013)

    Article  Google Scholar 

  49. U.B. Chanshetti, V.A. Shelke, S.M. Jadhav, S.G. Shankarwar, T.K. Chondhekar, A.G. Shankarwar, V. Sudarsan, M.S. Jogad, Density and molar volume studies of phosphate glasses. Phys. Chem. Technol. 9(1), 29–36 (2011)

    Google Scholar 

  50. A. Kipke, H. Hofmeister, Formation of silver nanoparticles in low-alkali borosilicate glass via silver oxide intermediates. Mater. Chem. Phys. 111, 254–259 (2008)

    Article  Google Scholar 

  51. H. Bürger, K. Kneipp, H. Hobert, W. Vogel, V. Kozhukharov, S. Neov, Glass formation, properties and structure of glasses in the TeO2-ZnO system. J. Non-Cryst. Solids 151, 134–142 (1992)

    Article  ADS  Google Scholar 

  52. K.M. Kaky, G. Lakshminarayana, S.O. Baki, Y.H. Taufiq-Yap, I.V. Kityk, M.A. Mahdi, Structural, thermal, and optical analysis of zinc boro-aluminosilicate glasses containing different alkali and alkaline modifier ions. J. Non-Cryst. Solids 456, 55–63 (2017)

    Article  ADS  Google Scholar 

  53. R. El-Mallawany, F.I. El-Agawany, M.S. Al Buriahi, C. Muthuwong, A. Novatski, Y.S. Rammah, Optical properties and nuclear radiation shielding capacity of TeO2-Li2O-ZnO glasses. Opt. Mater. 106, 109988 (2020)

    Article  Google Scholar 

  54. G. Lakshminarayana, I. Kebaili, M.G. Dong, M.S. Al-Buriahi, A. Dahshan, I.V. Kityk, D.E. Lee, J. Yoon, T. Park, Estimation of gamma-rays, and fast and the thermal neutrons attenuation characteristics for bismuth tellurite and bismuth boro-tellurite glass systems. J. Mater. Sci. 55, 5750–5771 (2020)

    Article  ADS  Google Scholar 

  55. P. Naresh, S.A. Priya, P.M. Mohan, B. Kavitha, N. Narsimlu, D. Sreenivasu, Ch. Srinivas, J.L. Naik, K.S. Kumar, Effect of network modifier ZnO on the dielectric studies of lithium boro tellurite glasses for battery and photonic device applications. AIP. Conf. Proc. 2162, 020007 (2019)

    Article  Google Scholar 

  56. P. Naresh, N. Narsimlu, Ch. Srinivas, Md. Shareefuddin, K.S. Kumar, Ag2O doped bioactive glasses: an investigation on the antibacterial, optical, structural and impedance studies. J. Non-Cryst. Solids 549, 120361 (2020)

    Article  Google Scholar 

  57. R. Elgayar, X. Hill, Chen, Dielectric spectroscopy and dissolution studies of bioactive glasses. Int. J. Appl. Glass Sci. 8, 418–427 (2017)

    Article  Google Scholar 

  58. M.E. Gouda, M.G. El-Shaarawy, H. Khodair, Electrical and dielectric properties of Agi-Ag2O-Bi2O3-B2O3 ionic glassy system. IOSR-JAP 6(5), 21–27 (2014)

    Article  Google Scholar 

  59. Y.H. Elbashar, A.M. Badr, H.A. Elshaikh, A.G. Mostafa, A.M. Ibrahim, Dielectric and optical properties of CuO containing sodium zinc phosphate glasses. Process. Appl. Ceram. 10(4), 277–286 (2016)

    Article  Google Scholar 

  60. S. Ibrahim, H. Darwish, M.M. Gomaa, Electrical and physicochemical properties of some Ag2O-containing lithia iron silica phosphate glasses. J. Mater. Sci. Mater. Electron. 23, 1131–1142 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge university of Tabuk for the financial support under research Project Number S-1441-0023.

Funding

Funding was provided by University of Tabuk, S-1441–0023, Asma M. Alturki

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed A. Taha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alatawi, A.S., Alturki, A.M., Soliman, G.M. et al. Improved toughness, electrical conductivity and optical properties of bioactive borosilicate glasses for orthopedic applications. Appl. Phys. A 127, 971 (2021). https://doi.org/10.1007/s00339-021-05116-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05116-1

Keywords

Navigation