Skip to main content
Log in

Tailoring modifications in the structural, optical, and electrical conductivity properties of poly vinyl pyrrolidone/chitosan doped with vanadium pentoxide nanoparticles using laser ablation technique

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nanocomposites films based on Poly Vinyl Pyrrolidone/Chitosan (PVP/Chitosan) filled by Vanadium pentoxide nanoparticles (V2O5 NPs) have been produced via solution casting method. Vanadium pentoxide nanoparticles were scattered direct in the blend of PVP/Chitosan by one-potential laser ablation technique. The main purpose in using Vanadium pentoxide nanoparticles is to modify the structural, optical, and electrical characterization of PVP/Chitosan composite. The complexation between Vanadium pentoxide nanoparticles and PVP/Chitosan has been approved via XRD and FTIR-ATR analyses. The average size of V2O5 was 20.5 nm. After the scattering by vanadium pentoxide nanoparticles, AC conductivity improved. The values of dielectric constant and dielectric lose decreased as the frequencies enhanced. At lower frequency, greater values of dielectric constant and dielectric lose have been detected due to the mobile charges inside the polymeric backbone. The fabricated PVP/Chitosan/V2O5 NPs films could be suggested for electrical and optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C.V.S. Rao, M. Ravi, V. Raja, P.B. Bhargav, A.K. Sharma, V.N. Rao, Preparation and characterization of PVP-based polymer electrolytes for solid-state battery applications. Iran. Polym. J. 21(8), 531–536 (2012)

    Google Scholar 

  2. T.M. Swamy, B. Ramaraj, Thermal and morphological properties of SA/HPMC blends. J. Appl. Polym. Sci. 112(4), 2235–2240 (2009)

    Google Scholar 

  3. K.S. Reddy, M.N. Prabhakar, P.K. Babu, G. Venkatesulu, U. Rao, K.C. Rao, M.C.S. Subha, Miscibility studies of hydroxypropyl cellulose/poly (ethylene glycol) in dilute solutions and solid state. Int. J. Carbohydr. Chem. (2012). https://doi.org/10.1155/2012/906389

    Article  Google Scholar 

  4. S.H. Lim, S.M. Hudson, Review of chitosan and its derivatives as antimicrobial agents and their uses as textile chemicals. J. Macromol. Sci. Part C Polym. Rev. 43(2), 223–269 (2003)

    Google Scholar 

  5. A. Camposeo, E. Mele, L. Persano, D. Pisignano, R. Cingolani, Role of doping concentration on the competition between amplified spontaneous emission and nonradiative energy transfer in blends of conjugated polymers. Phys. Rev. B 73(16), 165201 (2006)

    ADS  Google Scholar 

  6. X. Li, Y. Feng, B. Liu, D. Yi, X. Yang, W.P. ZhangBai, Influence of NbC particles on microstructure and mechanical properties of AlCoCrFeNi high-entropy alloy coatings prepared by laser cladding. J. Alloy. Compd. 788, 485–494 (2019). https://doi.org/10.1016/j.jallcom.2019.02.223

    Article  Google Scholar 

  7. C. Xue, J. You, H. Zhang, S. Xiong, T. Yin, Q. Huang, Capacity of myofibrillar protein to adsorb characteristic fishy-odor compounds: Effects of concentration, temperature, ionic strength, pH and yeast glucan addition. Food chem. 363, 130304 (2021). https://doi.org/10.1016/j.foodchem.2021.130304

    Article  Google Scholar 

  8. X. Li, X. Sheng, Y. Guo, X. Lu, H. Wu, Y. Chen, J. Gu, Multifunctional HDPE/CNTs/PW composite phase change materials with excellent thermal and electrical conductivities. J. Mater. Sci. Technol. 86, 171–179 (2021). https://doi.org/10.1016/j.jmst.2021.02.009

    Article  Google Scholar 

  9. R. Singh, S.G. Kulkarni, Morphological and mechanical properties of poly (vinyl alcohol) doped with inorganic fillers. Int. J. Polym. Mater. Polym. Biomater. 62(6), 351–357 (2013)

    Google Scholar 

  10. K. Hu, F. Wang, Z. Shen, H. Liu, J. Xiong, Ternary heterojunctions synthesis and sensing mechanism of Pd/ZnO–SnO2 hollow nanofibers with enhanced H2 gas sensing properties. J. Alloy. Compd. 850, 156663 (2021). https://doi.org/10.1016/j.jallcom.2020.156663

    Article  Google Scholar 

  11. K. Sreekanth, T. Siddaiah, N.O. Gopal, N.K. Jyothi, K.V. Kumar, C. Ramu, Thermal, structural, optical and electrical conductivity studies of pure and Mn2+ doped PVP films. S. Afr. J. Chem. Eng. 36, 8–16 (2021)

    Google Scholar 

  12. S. Kumar, G.K. Prajapati, A.L. Saroj, P.N. Gupta, Structural, electrical and dielectric studies of nano-composite polymer blend electrolyte films based on (70–x) PVA–x PVP–NaI–SiO2. Physica B Condens. Matter 554, 158–164 (2019)

    ADS  Google Scholar 

  13. J.T. Yeh, C.L. Chen, K.S. Huang, Y.H. Nien, J.L. Chen, P.Z. Huang, Synthesis, characterization, and application of PVP/chitosan blended polymers. J. Appl. Polym. Sci. 101(2), 885–891 (2006)

    Google Scholar 

  14. A.A. Menazea, H.A. Ezzat, W. Omara, O.H. Basyouni, S.A. Ibrahim, A.A. Mohamed, M.A. Ibrahim, Chitosan/graphene oxide composite as an effective removal of Ni, Cu, As, Cd and Pb from wastewater. Comput. Theor. Chem. 1189, 112980 (2020)

    Google Scholar 

  15. M.J. Tommalieh, H.A. Ibrahium, N.S. Awwad, A.A. Menazea, Gold nanoparticles doped polyvinyl alcohol/chitosan blend via laser ablation for electrical conductivity enhancement. Journal of Molecular Structure 1221, 128814 (2020)

    Google Scholar 

  16. W. Liu, Y. Qin, P. Li, Design of chitosan sterilization agents by a structure combination strategy and their potential application in crop protection. Molecules 26(11), 3250 (2021)

    Google Scholar 

  17. X. Zhu, F. Lin, Z. Zhang, X. Chen, H. Huang, D. Wang, Z. Wei, Enhancing performance of a GaAs/AlGaAs/GaAs nanowire photodetector based on the two-dimensional electron-hole tube structure. Nano Lett. 20(4), 2654–2659 (2020). https://doi.org/10.1021/acs.nanolett.0c00232

    Article  ADS  Google Scholar 

  18. Z. Fan, P. Ji, J. Zhang, D. Segets, D. Chen, S. Chen, Wavelet neural network modeling for the retention efficiency of sub-15 nm nanoparticles in ultrafiltration under small particle to pore diameter ratio. J. Membr. Sci. 635, 119503 (2021). https://doi.org/10.1016/j.memsci.2021.119503

    Article  Google Scholar 

  19. M.K. Ahmed, S.F. Mansour, R. Al-Wafi, A.A. Menazea, Composition and design of nanofibrous scaffolds of Mg/Se-hydroxyapatite/graphene oxide@ ε-polycaprolactone for wound healing applications. J. Market. Res. 9(4), 7472–7485 (2020)

    Google Scholar 

  20. G. Luo, Q. Zhang, M. Li, K. Chen, W. Zhou, Y. Luo, Z. Jiang, A flexible electrostatic nanogenerator and self-powered capacitive sensor based on electrospun polystyrene mats and graphene oxide films. Nanotechnology (2021). https://doi.org/10.1088/1361-6528/ac1019

    Article  Google Scholar 

  21. H. Cheng, T. Li, X. Li, J. Feng, T. Tang, D. Qin, Facile synthesis of Co9S8 nanocages as an electrochemical sensor for luteolin detection. J. Electrochem. Soc. (2021). https://doi.org/10.1149/1945-7111/ac1813

    Article  Google Scholar 

  22. T. Zhang, Z. Wang, H. Xiang, X. Xu, J. Zou, C. Lu, Biocompatible superparamagnetic europium-doped iron oxide nanoparticle clusters as multifunctional nanoprobes for multimodal in vivo imaging. ACS Appl. Mater. Interfaces 13(29), 33850–33861 (2021). https://doi.org/10.1021/acsami.1c07739

    Article  Google Scholar 

  23. M. Sajid, J. Płotka-Wasylka, Nanoparticles: synthesis, characteristics, and applications in analytical and other sciences. Microchem. J. 154, 104623 (2020)

    Google Scholar 

  24. X. Zhang, X. Sun, T. Lv, L. Weng, M. Chi, J. Shi, S. Zhang, Preparation of PI porous fiber membrane for recovering oil-paper insulation structure. J. Mater. Sci. Mater. Electron. 31(16), 13344–13351 (2020). https://doi.org/10.1007/s10854-020-03888-5

    Article  Google Scholar 

  25. P. Makhdoumi, H. Karimi, M. Khazaei, Review on metal-based nanoparticles: role of reactive oxygen species in renal toxicity. Chem. Res. Toxicol. 33(10), 2503–2514 (2020)

    Google Scholar 

  26. X. Xu, M. Nieto-Vesperinas, Azimuthal imaginarypoynting momentum density. Phys. Rev. Lett. 123(23), 233902 (2019). https://doi.org/10.1103/PhysRevLett.123.233902

    Article  ADS  Google Scholar 

  27. M. Yang, Q. Kong, W. Feng, W. Yao, Q. Wang, Hierarchical porous nitrogen, oxygen, and phosphorus ternary doped hollow biomass carbon spheres for high-speed and long-life potassium storage. Carbon Energy (2021). https://doi.org/10.1002/cey2.157

    Article  Google Scholar 

  28. F. Behzad, S.M. Naghib, S.N. Tabatabaei, Y. Zare, K.Y. Rhee, An overview of the plant-mediated green synthesis of noble metal nanoparticles for antibacterial applications. J. Ind. Eng. Chem. (2020). https://doi.org/10.1016/j.jiec.2020.12.005

    Article  Google Scholar 

  29. Y. Hu, J.X. Qing, Z.H. Liu, Z.J. Conrad, J.N. Cao, X.P. Zhang, Hovering efficiency optimization of the ducted propeller with weight penalty taken into account. Aerosp. Sci. Technol. (2021). https://doi.org/10.1016/j.ast.2021.106937

    Article  Google Scholar 

  30. X. Zhang, Y. Tang, F. Zhang, C. Lee, A novel aluminum-graphite dual-ion battery. Adv. Energy Mater. 6(11), 1502588 (2016). https://doi.org/10.1002/aenm.201502588

    Article  Google Scholar 

  31. M. Wang, C. Jiang, S. Zhang, X. Song, Y. Tang, H. Cheng, Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage. Nat. Chem. 10(6), 667–672 (2018). https://doi.org/10.1038/s41557-018-0045-4

    Article  Google Scholar 

  32. Y. Yu, Y. Zhao, Y. Qiao, Y. Feng, W. Li, W. Fei, Defect engineering of rutile TiO2 ceramics: route to high voltage stability of colossal permittivity. J. Mater. Sci. Technol. 84, 10–15 (2021). https://doi.org/10.1016/j.jmst.2020.12.046

    Article  Google Scholar 

  33. X. Tong, F. Zhang, B. Ji, M. Sheng, Y. Tang, Carbon-coated porous aluminum foil anode for high-rate, long-term cycling stability, and high energy density dual-ion batteries. Adv. Mater. 28(45), 9979–9985 (2016). https://doi.org/10.1002/adma.201603735

    Article  Google Scholar 

  34. I.D. Ibrahim, T. Jamiru, E.R. Sadiku, Y. Hamam, Y. Alayli, A.A. Eze, Application of nanoparticles and composite materials for energy generation and storage. IET Nanodielectr. 2(4), 115–122 (2019)

    Google Scholar 

  35. A. Aldalbahi, M.E. El-Naggar, M.K. Ahmed, G. Periyasami, M. Rahaman, A.A. Menazea, Core–shell Au@ Se nanoparticles embedded in cellulose acetate/polyvinylidene fluoride scaffold for wound healing. J. Market. Res. 9(6), 15045–15056 (2020)

    Google Scholar 

  36. A.A. Menazea, N.S. Awwad, Antibacterial activity of TiO2 doped ZnO composite synthesized via laser ablation route for antimicrobial application. J. Market. Res. 9(4), 9434–9441 (2020)

    Google Scholar 

  37. S. Barcikowski, G. Compagnini, Advanced nanoparticle generation and excitation by lasers in liquids. Phys. Chem. Chem. Phys. 15(9), 3022–3026 (2013)

    Google Scholar 

  38. M.K. Ahmed, M.E. El-Naggar, A. Aldalbahi, M.H. El-Newehy, A.A. Menazea, Methylene blue degradation under visible light of metallic nanoparticles scattered into graphene oxide using laser ablation technique in aqueous solutions. J. Mol. Liq. 315, 113794 (2020)

    Google Scholar 

  39. H. Yu, X. Rui, H. Tan, J. Chen, X. Huang, C. Xu, W. Liu, D. Yu, H.H. Hung, H.E. Hoster, Q. Yan, Cu doped V 2 O 5 flowers as cathode material for high-performance lithium ion batteries. Nanoscale 5(11), 4937–4943 (2013)

    ADS  Google Scholar 

  40. S. Nalini, B. Selvakumar, P. Periasamy, Simple synthesis and characterization of V2O5 nanoparticles by microwave assisted wet chemical method. Int. J. Eng. Manuf. Sci. 7, 411–417 (2017)

    Google Scholar 

  41. J. Livage, Hydrothermal synthesis of nanostructured vanadium oxides. Materials 3(8), 4175–4195 (2010)

    ADS  Google Scholar 

  42. A.M. Abdelghany, M.S. Mekhail, E.M. Abdelrazek, M.M. Aboud, Combined DFT/FTIR structural studies of monodispersed PVP/Gold and silver nano particles. J. Alloy. Compd. 646, 326–332 (2015)

    Google Scholar 

  43. M.A.Q. Bhuiyan, M.S. Rahman, M.S. Rahaman, M. Shajahan, N.C. Dafader, Improvement of swelling behaviour of poly (vinyl pyrrolidone) and acrylic acid blend hydrogel prepared by the application of gamma radiation. Org. Chem. Curr. Res. 4(138), 2161–401 (2015)

    Google Scholar 

  44. A. Mohseni-Bandpi, B. Kakavandi, R. Kalantary, A. Azari, A. Keramati, Development of a novel magnetite–chitosan composite for the removal of fluoride from drinking water: adsorption modeling and optimization. RSC Adv. 5(89), 73279–73289 (2015)

    ADS  Google Scholar 

  45. K. Choo, Y. Ching, C. Chuah, S. Julai, N. Liou, Preparation and characterization of polyvinyl alcohol-chitosan composite films reinforced with cellulose nanofiber. Materials 9(8), 644 (2016)

    ADS  Google Scholar 

  46. A. Patterson, The Scherrer formula for X-ray particle size determination. Phys. Rev. 56(10), 978–982 (1939)

    MATH  ADS  Google Scholar 

  47. I. Safo, M. Werheid, C. Dosche, M. Oezaslan, The role of polyvinylpyrrolidone (PVP) as a capping and structure-directing agent in the formation of Pt nanocubes. Nanoscale Adv. 1(8), 3095–3106 (2019)

    ADS  Google Scholar 

  48. M.T. Elabbasy, M.F.H. Abd El-Kader, A.M. Ismail, A.A. Menazea, Regulating the function of bismuth (III) oxide nanoparticles scattered in Chitosan/Poly (Vinyl Pyrrolidone) by laser ablation on electrical conductivity characterization and antimicrobial activity. J. Mater. Res. Technol. 10, 1348–1354 (2021)

    Google Scholar 

  49. W. El Hotaby, H. Sherif, B. Hemdan, W. Khalil, S. Khalil, Assessment of in situ-prepared polyvinylpyrrolidone-silver nanocomposite for antimicrobial applications. Acta Phys. Pol. A 131(6), 1554–1560 (2017)

    ADS  Google Scholar 

  50. R. Bryaskova, D. Pencheva, S. Nikolov, T. Kantardjiev, Synthesis and comparative study on the antimicrobial activity of hybrid materials based on silver nanoparticles (AgNps) stabilized by polyvinylpyrrolidone (PVP). J. Chem. Biol. 4(4), 185–191 (2011)

    Google Scholar 

  51. Y. Gutha, J. Pathak, W. Zhang, Y. Zhang, X. Jiao, Antibacterial and wound healing properties of chitosan/poly(vinyl alcohol)/zinc oxide beads (CS/PVA/ZnO). Int. J. Biol. Macromol. 103, 234–241 (2017)

    Google Scholar 

  52. M. FernandesQueiroz, K. Melo, D. Sabry, G. Sassaki, H. Rocha, Does the use of chitosan contribute to oxalate kidney stone formation? Mar. Drugs 13(1), 141–158 (2014)

    Google Scholar 

  53. A. Kumar, P.P. Sahay, Influence of Ti doping on the microstructural and electrochromic properties of dip-coated nanocrystalline V 2 O 5 thin films. J. Sol-Gel. Sci. Technol. 95(1), 34–51 (2020)

    Google Scholar 

  54. Y. Wu, G. Gao, G. Wu, Self-assembled three-dimensional hierarchical porous V 2 O 5/graphene hybrid aerogels for supercapacitors with high energy density and long cycle life. J. Mater. Chem. A 3(5), 1828–1832 (2015)

    Google Scholar 

  55. R.M. Ahmed, Optical properties and structure of cobalt chloride doped PVA and its blend with PVP. Int. J. Mod. Phys. B 28(05), 1450036 (2014)

    ADS  Google Scholar 

  56. S.B. Aziz, O.G. Abdullah, A.M. Hussein, R.T. Abdulwahid, M.A. Rasheed, H.M. Ahmed, A.R. Mohammed, Optical properties of pure and doped PVA: PEO based solid polymer blend electrolytes: two methods for band gap study. J. Mater. Sci. Mater. Electron. 28(10), 7473–7479 (2017)

    Google Scholar 

  57. A.M. Abdelghany, A.A. Menazea, A.M. Ismail, Synthesis, characterization and antimicrobial activity of chitosan/polyvinyl alcohol blend doped with Hibiscus Sabdariffa L. extract. J. Mol. Struct. 1197, 603–609 (2019)

    ADS  Google Scholar 

  58. B. Chana, R. Kumar, Synthesis and properties of cupric sulphate doped polyvinyl pyrrolidone (PVP) solutions. J. Macromol. Sci. Part B 56(11–12), 863–872 (2017)

    ADS  Google Scholar 

  59. A.A. Menazea, A.M. Ismail, I.S. Elashmawi, The role of Li4Ti5O12 nanoparticles on enhancement the performance of PVDF/PVK blend for lithium-ion batteries. J. Mater. Res. Technol. 9(3), 5689–5698 (2020)

    Google Scholar 

  60. A.A. Menazea, A.M. Abdelghany, N.A. Hakeem, W.H. Osman, F.H. Abd El-kader, Nd: YAG nanosecond laser pulses for precipitation silver nanoparticles in silicate glasses: AC conductivity and dielectric studies. Silicon (2020). https://doi.org/10.1007/s12633-019-0094-3

    Article  Google Scholar 

  61. M. George, S.S. Nair, K.A. Malini, P.A. Joy, M.R. Anantharaman, Finite size effects on the electrical properties of sol–gel synthesized CoFe2O4 powders: deviation from Maxwell-Wagner theory and evidence of surface polarization effects. J. Phys. D Appl. Phys. 40(6), 1593 (2007)

    ADS  Google Scholar 

  62. A. Arya, A.L. Sharma, Selection of best composition of Na+ ion conducting PEO-PEI blend solid polymer electrolyte based on structural, electrical, and dielectric spectroscopic analysis. Ionics 26(2), 745–766 (2020)

    Google Scholar 

  63. K.N. Kumar, M. Kang, K. Sivaiah, M. Ravi, Y.C. Ratnakaram, Enhanced electrical properties of polyethylene oxide (PEO) ?polyvinylpyrrolidone (PVP): Li? blended polymer electrolyte films with addition of Ag nanofiller. Ionics 22, 815–825 (2016)

    Google Scholar 

  64. O. Pravakar, T. Siddaiah, P.V.R.K. Ramacharyulu, N.O. Gopal, C. Ramu, H. Nagabhushana, Spectroscopic, thermal, structural and electrical studies on VO2? ions doped PVA/ MAA: EA polymer blend films. J. Sci. Adv. Mater. Dev. 4, 267–275 (2019)

    Google Scholar 

  65. T. Mahapatra, S. Halder, S. Bhuyan, R.N.P. Choudhary, Dielectric and electrical characterization of lead-free complex electronic ceramic: (Bi1/2Li1/2)(Zn1/2W1/2)O3. J. Mater. Sci. Mater. Electr. 29(21), 18742–50 (2014)

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of Taif University Researchers Supporting Project number (TURSP-2020/162), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Menazea.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menazea, A.A., Mahmoud, K.H. & Abdel-Rahim, F.M. Tailoring modifications in the structural, optical, and electrical conductivity properties of poly vinyl pyrrolidone/chitosan doped with vanadium pentoxide nanoparticles using laser ablation technique. Appl. Phys. A 127, 826 (2021). https://doi.org/10.1007/s00339-021-04984-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04984-x

Keywords

Navigation