Skip to main content
Log in

Tunable band gaps and double-negative properties of innovative acoustic metamaterials

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Using monophase core materials to design periodically acoustic metamaterials with vibration isolation properties and special acoustic properties that do not exist in natural bulk solids is a challenging and innovative work. In this paper, we proposed an innovative star-shaped acoustic metamaterials with periodic assemblies based on the double-negative properties generated by rotational resonance, monopolar resonance and dipole resonance. At the same time, the metastructures would generate broad and multiple omnidirectional band gaps through the rotational resonance of the spherical masses. In addition, the rationally designed arc-shaped ligaments could produce reversible deformations under the excitation of external strains, thereby realizing preliminary tuning of the band gaps. Numerical simulations with the finite element method provided effective data support for the above research, and proved that the proposed architected microstructures would provide reference for vibration reduction and the design of acoustic lens metamaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Z. Chen, W. Zhou, C. Lim, Active control for acoustic wave propagation in nonlinear diatomic acoustic metamaterials. Int. J. Nonlin. Mech. 125, 103535 (2020)

    Article  Google Scholar 

  2. Y. Wu, Y. Lai, Z. Zhang, Elastic metamaterials with simultaneously negative effective shear modulus and mass density. Phys. Rev. Lett. 107, 105506 (2011)

    Article  ADS  Google Scholar 

  3. Y. Sun, N. Pugno, In plane stiffness of multifunctional hierarchical honeycombs with negative Poisson’s ratio sub-structures. Compos. Struct. 106, 681–689 (2013)

    Article  Google Scholar 

  4. S. Cui, B. Gong, Q. Ding, Y. Sun, F. Ren, X. Liu, Q. Yan, H. Yang, X. Wang, B. Song, Mechanical metamaterials foams with tunable negative Poisson’s ratio for enhanced energy absorption and damage resistance. Materials 11, 1869 (2018)

    Article  ADS  Google Scholar 

  5. Y. Sun, Q. Chen, N. Pugno, Elastic and transport properties of the tailorable multifunctional hierarchical honeycombs. Compos. Struct. 107, 698–710 (2014)

    Article  Google Scholar 

  6. K. Lu, Y. Tian, N. Gao, L. Li, H. Lei, M. Yu, Propagation of longitudinal waves in the broadband hybrid mechanism gradient elastic metamaterials rods. Appl. Acoust. 171, 107571 (2020)

    Article  Google Scholar 

  7. X. Zhou, L. Wang, L. Qin, F. Peng, Improving sound insulation in low frequencies by multiple band-gaps in plate-type acoustic metamaterials. J. Phys. Chem. Solids 146, 109606 (2020)

    Article  Google Scholar 

  8. S. Zhang, J. Wu, Low-frequency band gaps in phononic crystals with composite locally resonant structures. Acta. Phys. Sin. 62, 134302 (2013)

    Google Scholar 

  9. J. Zhou, L. Dou, K. Wang, D. Xu, H. Ouyang, A nonlinear resonator with inertial amplification for very low-frequency flexural wave attenuations in beams. Nonlinear Dyn. 96, 647–665 (2019)

    Article  MATH  Google Scholar 

  10. Z. Liu, X. Zhang, Y. Mao, Y. Zhu, Z. Yang, C. Chan, P. Sheng, Locally resonant sonic materials. Phys. B 338, 201–205 (2000)

    Google Scholar 

  11. Q. Cheng, H. Guo, T. Yuan, P. Sun, F. Guo, Y. Wang, Topological design of honeycomb structure for broad and multiple band gaps in low-frequency range. Extreme Mech. Lett. 35, 100632 (2020)

    Article  Google Scholar 

  12. X. Xu, M.V. Barnhart, X. Li, Y. Chen, G. Huang, Tailoring vibration suppression bands with hierarchical metamaterials containing local resonators. J. Sound Vib. 442, 237–248 (2019)

    Article  ADS  Google Scholar 

  13. C. Cai, J. Zhou, L. Wu, K. Wang, D. Xu, H. Ouyang, Design and numerical validation of quasi-zero-stiffness metamaterials for very low-frequency band gaps. Compos. Struct. 236, 111862 (2020)

    Article  Google Scholar 

  14. J. Zhou, X. Wang, D. Xu, S. Bishop, Nonlinear dynamic characteristics of a quasi-zero stiffness vibration isolator with cam-roller-spring mechanisms. J. Sound Vib. 346, 53–69 (2015)

    Article  ADS  Google Scholar 

  15. K. Wang, J. Zhou, Q. Wang, H. Ouyang, D. Xu, Low-frequency band gaps in a metamaterial rod by negative-stiffness mechanisms: design and experimental validation. Appl.Phys. Lett. 114, 251902 (2019)

    Article  ADS  Google Scholar 

  16. Y. Dong, H. Yao, J. Du, J. Zhao, C. Ding, Research on bandgap property of a novel small size multi-band phononic crystal. Phys. Lett. A 383, 283–288 (2019)

    Article  ADS  Google Scholar 

  17. K. Wang, J. Zhou, H. Ouyang, L. Cheng, D. Xu, A semi-active metamaterial beam with electromagnetic quasi-zero-stiffness resonators for ultralow-frequency band gap tuning. Int. J. Mech. Sci. 176, 105548 (2020)

    Article  Google Scholar 

  18. N. Kumar, S. Pal, Low frequency and wide band gap metamaterial with divergent shaped star units: Numerical and experimental investigations. Appl. Phys. Lett. 115, 254101 (2019)

    Article  ADS  Google Scholar 

  19. Z. Yan, C. Zhang, Y. Wang, Elastic wave localization in two-dimensional phononic crystals with one-dimensional random disorder and aperiodicity. Phys. B 406, 1154–1161 (2011)

    Article  ADS  Google Scholar 

  20. L. Alessandro, A. Krushynska, R. Ardito, N. Pugno, A. Corigliano, A design strategy to match the band gap of periodic and aperiodic metamaterials. Sci. Rep. 10, 16403 (2020)

    Article  Google Scholar 

  21. X. Wu, Y. Li, S. Zuo, The study of a locally resonant beam with aperiodic mass distribution. Appl. Acoust. 165, 107306 (2020)

    Article  Google Scholar 

  22. R. Zhu, X. Liu, G. Hu, C. Sun, G. Huang, Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterial. Nat. Commun. 5, 5510 (2014)

    Article  ADS  Google Scholar 

  23. J. Li, C. Chan, Double-negative acoustic metamaterial. Phys. Rev. E 70, 055602 (2004)

    Article  ADS  Google Scholar 

  24. N. Fang, D. Xi, J. Xu, M. Ambati, W. Srituravanich, C. Sun, X. Zhang, Ultrasonic metamaterials with negative modulus. Nat. Mater. 5, 452–456 (2006)

    Article  ADS  Google Scholar 

  25. X. Liu, G. Hu, G. Huang, C. Sun, An elastic metamaterial with simultaneously negative mass density and bulk modulus. Appl. Phys. Lett. 98, 251907 (2011)

    Article  ADS  Google Scholar 

  26. Y. Wu, Y. Lai, Z. Zhang, Effective medium theory for elastic metamaterials in two dimensions. Phys. Rev. B 76, 205313 (2007)

    Article  ADS  Google Scholar 

  27. Y. Lai, Y. Wu, P. Sheng, Z. Zhang, Hybrid elastic solids. Nat. Mater. 10, 620–624 (2011)

    Article  ADS  Google Scholar 

  28. M. Chen, W. Xu, Y. Liu, K. Yan, H. Jiang, Y. Wang, Band gap and double-negative properties of a star-structured sonic metamaterial. Appl. Acoust. 139, 235–242 (2018)

    Article  Google Scholar 

  29. M. Chen, H. Jiang, H. Zhang, D. Li, Y. Wang, Design of an acoustic superlens using single-phase metamaterials with a star-shaped lattice structure. Sci. Rep. 8, 1861 (2018)

    Article  ADS  Google Scholar 

  30. Y. Huang, N. Gao, W. Chen, R. Bao, Extension/compression-controlled complete band gaps in 2D chiral square-lattice-like structures. Acta. Phys. Sin. 31, 51–65 (2018)

    Google Scholar 

  31. L. Jian, Y. Wang, W. Chen, Y. Wang, R. Bao, Harnessing inclusions to tune post-buckling deformation and bandgaps of soft porous periodic structures. J. Sound Vib. 459, 114848 (2019)

  32. Y. Chen, T. Li, F. Scarpa, L. Wang, Lattice metamaterials with mechanically tunable poisson’s ratio for vibration control. Phys. Rev. Appl. 7, 024012 (2017)

    Article  ADS  Google Scholar 

  33. K. Bertoldi, M.C. Boyce, Mechanically triggered transformations of phononic band gaps in periodic elastomeric structures. Phys. Rev. B 77, 052105 (2008)

    Article  ADS  Google Scholar 

  34. K. Bertoldi, M.C. Boyce, S. Deschanel, S.M. Prange, T. Mullin, Mechanics of deformation-triggered pattern transformations and superelastic behavior in periodic elastomeric structures. J. Mech. Phys. Solids 56, 2642–2668 (2008)

    Article  MATH  ADS  Google Scholar 

  35. K. Bertoldi, M.C. Boyce, Wave propagation and instabilities in monolithic and periodically structured elastomeric materials undergoing large deformations. Phys. Rev. B 78, 184107 (2008)

    Article  ADS  Google Scholar 

  36. J. Shim, P. Wang, K. Bertoldi, Harnessing instability-induced pattern transformation to design tunable phononic crystals. Int. J. Solids Struct. 58, 52–61 (2015)

    Article  Google Scholar 

  37. D. Mousanezhad, S. Babaee, R. Ghosh, E. Mahdi, K. Bertoldi, A. Vaziri, Honeycomb phononic crystals with self-similar hierarchy. Phys. Rev. B 92, 104304 (2015)

    Article  ADS  Google Scholar 

  38. S. Ning, F. Yang, C. Luo, Z. Liu, Z. Zhuang, Low-frequency tunable locally resonant band gaps in acoustic metamaterials through large deformation. Extrem. Mech Lett 35, 100623 (2019)

    Article  Google Scholar 

  39. S. Nanthakumar, X. Zhuang, H. Park, C. Nguyen, Y. Chen, T. Rabczuk, Inverse design of quantum spin hall-based phononic topological insulators. J. Mech. Phys. Solids 125, 550–571 (2019)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Funding

The project was supported by the National Natural Science of China (Grant No. 61690222, 12072222, 12021002, 11991032), the State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures (Grant No. SKLTESKF1901), the Aeronautical Science Foundation of China (Grant No. ASFC-201915048001) and the Project of Tianjin Natural Science Foundation (No.18JCQNJC05400).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongtao Sun or Yajun Xin.

Ethics declarations

Conflict of interest

The authors declare that they do not have any financial and personal relationships with other people or organizations that represent a conflict of interest in connection with the manuscript submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Cheng, S., Wang, C. et al. Tunable band gaps and double-negative properties of innovative acoustic metamaterials. Appl. Phys. A 127, 495 (2021). https://doi.org/10.1007/s00339-021-04612-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04612-8

Keywords

Navigation